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ABSTRACT

The stability of spin rates and emission regions of radio-emitting neutron stars (pulsars) has enabled

remarkable advances, including the detection of exoplanets, tests of theories of gravity, and the opening

of a new window in gravitational wave astronomy.

An ideal astrophysical clock would emit identical pulses at a constant rate, propagating along single

geodesics through a perfect vacuum. In reality, the timing precision achievable with pulsars is limited by

spin noise, variability in the beam produced in a complex magnetosphere, and multi-path propagation

through a turbulent interstellar medium, as well as uncertainties in the changing pulsar – observatory

vector and instrumental limitations.

Here we present the fundamentals of pulsar timing, its current limitations, and prospects for improve-

ments in timing precision. We develop metrics to assess the timing quality of a pulsar and use them

to evaluate sources currently included in pulsar timing arrays like NANOGrav to demonstrate the use

of these metrics on future discoveries. With increases in telescope sensitivity, pulsar timing precision

will increasingly be limited by propagation effects in the interstellar medium. We identify sources of

non-Gaussianity in timing residuals and separate out effects that are chromatic or achromatic, as well

as effects that vary on short (seconds to minutes) and longer (days to months) timescales.

Modern wide-bandwidth receivers provide simultaneous arrival times across a range of frequencies,

enabling the robust mitigation of chromatic interstellar effects and the identification of non-Gaussian

events superimposed on random fluctuations. We recommend changes to timing procedures that

leverage instrumentation advances to improve timing precision.
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Part I. Preliminaries

1. INTRODUCTION

The methodology of pulsar timing exploits the narrow pulses and stable spins of neutron stars (NSs) for their use as

astrophysical clocks. It is now applied across the entire electromagnetic spectrum, primarily at radio, X-ray, and γ-ray

frequencies, for a host of unique applications. The existence of gravitational waves was demonstrated by timing studies

of binary pulsars (J. H. Taylor 1994; J. M. Weisberg et al. 2010), which also provided fundamental tests of General

Relativity and other theories of gravity (M. Kramer et al. 2006b), along with precise determinations of the orbits and

masses of neutron stars (P. B. Demorest et al. 2010; J. Antoniadis et al. 2013; H. T. Cromartie et al. 2020). Neutron

star masses provide key constraints on the equation of state of supra-nuclear matter, especially in concert with X-ray

observations that constrain NS radii (e.g. J. M. Lattimer 2021; M. C. Miller et al. 2021; N. Rutherford et al. 2024).

Recently, precision timing of millisecond pulsars has led to the discovery of a stochastic background of long-wavelength

gravitational waves. Propagation delays through intervening plasmas and spacetime are necessarily accounted for in

pulsar timing and they provide unique information about plasma densities, magnetic fields, and (upper bounds on)

dark matter. Finally, long timing programs on some pulsars now extend to nearly a half century, yielding some of the

best upper bounds on variations in the gravitational constant G and other fundamental constants (D. E. Kaplan et al.

2022).

The precision of time-of-arrival (TOA) measurements has improved steadily, which has allowed testing theories of

gravity with higher-order relativistic and the discovery of perturbations from low-frequency (nanohertz) gravitational

waves (GWs) (M. V. Sazhin 1978; S. Detweiler 1979; R. W. Hellings & G. S. Downs 1983; R. W. Romani & J. H. Taylor

1983; D. C. Backer & R. W. Hellings 1986). The discovery of millisecond pulsars (MSPs D. C. Backer et al. 1982)

initially opened the door to placing meaningful limits on or detecting cosmological gravitational-wave backgrounds (B.

Bertotti et al. 1983; J. M. Cordes & D. R. Stinebring 1984; R. S. Foster & D. C. Backer 1990; D. R. Stinebring et al.

1990; V. M. Kaspi et al. 1994). Projections based on improved timing methods and discovery of new MSPs increased

the plausibility of detection of nanohertz GWs (A. N. Lommen & D. C. Backer 2001; M. Kramer et al. 2004; J. M.

Cordes et al. 2004; F. A. Jenet et al. 2005, 2006; G. B. Hobbs et al. 2009; P. Demorest et al. 2009; G. Hobbs et al.

2010) and have now been realized (G. Agazie et al. 2023a; EPTA Collaboration and InPTA Collaboration et al. 2023;

D. J. Reardon et al. 2023a; H. Xu et al. 2023).

The most demanding timing application is in fact GW detection, which not only relies on measurements to better

than ∼ 100 ns at each epoch but also requires corrections for chromatic effects accurate to the same order. Achieving

this precision brings into play all effects that influence arrival times, from processes interior to the neutron star to

the digitized data streams that are analyzed. Improving timing sensitivity to GWs and for other purposes similiarly

requires attention to all of these end-to-end effects.

MSPs provide the timing precision for GW detection that ‘canonical pulsars’ (CPs) cannot. CPs, with surface magnetic

fields ∼ 1012±1 G and periods P ≳ 10 ms), show much larger spin noise and pulse shape variations that translate into

pulse phase variations up to 106 times greater than for MSPs. Nonetheless, CPs are useful for probing the ISM and

may present unique opportunities for probing high-value targets, such as a black-hole pulsar binary (including pulsars

orbiting Sgr A*).

This paper inventories processes that limit timing efficacy and explores methods for its improvement. It is therefore

both a review and a forward-looking analysis aimed at reducing systematic and random timing errors for individual

pulsars and striving for optimization of PTAs. We present scaling laws for forecasting the measurement precisions of

astrophysical parameters. These provide the means for testing the completeness of our understanding of timing delays

as well as for identifying areas of improvements, including the benefits of new telescopes and instrumentation. The

paper builds on a number of works that have characterized arrival time variance on an empirical basis. References are

given in individual sections of the paper that compare i magnetars along with CPs and MSPs. Pulsar timing array

collaborations have presented the most detailed studies of MSPs. Though much of our presentation makes use of data
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from the NANOGrav collaboration11, we also use other data sources and the results are intended to be independent

of any particular PTA group.

Optimization of pulsar timing requires assessment of each pulsar’s quality as an astrophysical clock, including the

intrinsic properties of the neutron star and its magnetosphere, any binary motion, its immediate environment, and

the plasmas encountered along the line of sight (LoS ). Also relevant is our ability to measure pulse times of arrival

(TOAs) precisely and refer them to the solar system barycenter accurately.

By its focus on timing limitations and optimization, the paper does not delve into the optimization of model fitting

to long arrival-time sequences nor to optimized inference using frequentist or Bayesian methods. Instead the paper is

meant to inform how to construct covariance matrices employed for parameter inference and to minimize the values

of covariance matrix elements.

Table 1. Overview of timing delays and ToA estimation

Contribution Effecta Mitigationb,c Amplituded RF Fluctuation Paper

Type Instr Chromaticitye Signaturef Section

Source & Source Environment

Spin noise δt triage · · · ∼ 100 ns – s a R/PL (f−4–f−6) 4, 19

Pulse shape δt triage · · · µs – ms c (ν−0.3) Err 5.4, 6.2

Pulse jitter t̂ NM T ≲ µs – ms a (c) W 7.2

Orbital noise δt triage · · · ≲ ms a R/PL (∼ f−3) 4.7

Interstellar Medium

Dispersion δt C B ≲ ms C (ν−2) R/PL,LP r−8/3 12.1, 10.1

Multipath [DM(ν) t̂, δt PC, NM ν, B ≲ 100 ns C (ν−23/6) R/LP 12.2

Faraday rotation δt C Pol cal ≲ ns C (ν−3) Lin 5.5

Pulse broadening t̂, dt PC, NM, triage ν ns – s C ( ∼ ν−4) R/PL,LP 11

Interstellar intensity scintillation (S/N variations)

Diffractive t̂ NM B, T ≲ µs – ms C R/LP 6.1, 9.3

Refractive t̂ NM ν ≲ µs C R/LP 6.1, 9.3

Angle of Arrival δt PC ν ≲ µs C (ν−2 & ν−4) R/PL,LP 10.2, 12.3

Instrumentation & Analysis

Astrometric & clock errors δt C ≲ 10 ns a Err 8.4

SSBC uncertainties δt PC, NM Ephem <100 ns a Osc 8.3

Polarization δt C Pol cal ≪ µs C Err 8.1

Radiometer noiseg t̂ NM B, T < µs – ms c (ν0 → ν−2.7) W 6

Gravitational Waves δt None ≲ 100 ns a R/PL, Osc 1

Table 1 continued on next page

11 https://nanograv.org

https://nanograv.org
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Table 1 (continued)

Contribution Effecta Mitigationb,c Amplituded RF Fluctuation Paper

Type Instr Chromaticitye Signaturef Section

Note—
a Effect: t̂ signifies an influence on ToA estimation while δt implies contribution of a systematic ToA offset that is epoch
dependent;
b Mitigation type: triage = PSR choice; C = correctable; PC = partially correctable; NM = include in noise model;
c Instrumental mitigation: ν = radio frequency; B = bandwidth; T = integration time per epoch;

Pol cal = polarization calibration; Ephem = solar system ephemeris
d Amplitude of arrival time delay or timing residual either before or after mitigation (as relevant);
e Dependence on radio frequency (= ν):

a = achromatic; c = weakly chromatic, C = strongly chromatic with approximate scaling (if simple);
f Signature of fluctuation spectrum in long time series (yr):

W = white; S = stationary lowpass; R/PL = red with power-law spectrum; R/LP = red with ∼flat low-pass spectrum;
Lin = typically a linear spectrum, Osc = oscillatory, Err = erratic or episodic

g The ToA error from radiometer noise depends on the flux density spectrum of the pulsar, which typically scales as ν−y, with
y ∼ 0 to 4.

Table 1 gives a broad overview of salient contributions to arrival times and timing residuals — from neutron star to

digital processing. These are grouped into effects that take place in and near the source, those involving propagation

through the ISM and other plasmas, and local (solar system) and instrumental delays. Some of these contribute

systematic or stochastic delays (or both) that are achromatic (or nearly so) while others, especially plasma effects, are

highly frequency-dependent. A wide range of temporal variability is also seen, ranging from uncorrelated perturbations

between epochs (white noise) to red noise processes with steep power law spectra ∝ f−1 to f−6. Timing residuals

include both Gaussian and non-Gaussian processes, the latter from magnetospheric effects and the ISM. The table

indicates whether an effect contributes to an error in a ToA estimte t̂ or instead introduces a systematic arrival time

offset δt. The table also indicates how a contribution can be mititgated, where ‘triage’ simply means that only some

pulsars warrant inclusion in a timing program. Representative amplitudes of timing errors or offsets are given along

with their dependence, if any, on radio frequency ν. The signature in the power spectrum of timing residuals is given

in the penultimate column. Relevant paper sections are indicated in the last column, which serves as a rough roadmap

for some aspects of the review.

The paper is organized in seven parts, the first comprising this introduction followed by a brief section on nomenclature.

The foundations of pulsar timing are given in Part II which describes pulsar signals and their propagation through the

interstellar medium (ISM) along with a description of template matching for ToA estimation. Part III summarizes what

we know about the interstellar plasma and its effects on individual arrival times. Part IV describes the phenomenology

of aggregated arrival times in the time domain, the radio frequency domain, and the fluctuation-frequency domain.

Model timing equations and the mitigation of ToA errors is the subject of Part V while the prioritization of MSPs for

PTA applications is given in Part VI. The salient elements of our analysis is summarized in Part VII by considering how

a pulsar timing array might be assembled ab initio but taking into account timing phenomenology and methodology

covered in the rewview. A number of appendices comprise Part VIII. These present nomenclature and definitions as

well as detailed derivations and descriptions of code and simulations.

2. NOMENCLATURE

Discussions of pulsar timing necessarily involve an abundance of symbols and acronyms. We use standard nomenclature

for electromagnetic frequency ν and its relationship with vacuum wavelength λ = cν−1 where c is the speed of light.

We need two additional frequencies, f for fluctuation frequencies of various quantities, including gravitational waves,

and fs for pulse rates of pulsars, which are closely related to the spin frequencies of the associated neutron stars
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(modulo the usually unknown Doppler shift). Many more definitions are needed for modeling the pulsar signal and

for its propagation through the ISM. A comprehensive list is given in Appendix A.
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Part II. Basics of Pulsar Timing

3. THE GIST OF PULSAR TIMING AND ITS LIMITATIONS

Pulsar timing amounts to counting pulses over time spans ranging from minutes to decades, taking into account that

they are only quasi-periodic and pulse frequencies are nonstationary due to spindown of NSs. Also, pulses from objects

in binary systems arrive early or late depending on orbital phase and also from Earth’s location in its orbit.

These deterministic effects are captured in a model for pulse phase, Φ(t) that parameterizes the NS spin, orbital

elements, and astrometric terms. A perfect model yields integers at measured arrival times but unmodeled effects add

random errors and systematics to phase residuals, yielding Φ(t) = integer + δϕ(t).

Timing methodology relies on an empirical foundation that has unfolded over the last half century:

1. Rotational stability of MSPs is sufficient to allow individual turns of a NS to be predicted with high precision so

that only infrequent monitoring is needed to track pulse phase and to look for departures caused by astrophysical

effects of interest, including plasma and gravitational perturbations from both static fields and GWs;

2. Emitted pulses are cross-sectional slices through a beam of radiation whose orientation is locked to the spinning

NS crust (in the mean);

3. Relative to a fiducial phase locked to the NS, the phases (and amplitudes) of single pulses vary stochastically

with stationary statistics; as a result, the average pulse profile obtained from a large number of single pulses

synchronously with the rotation converges to a stable form that largely does not change with time;

4. Average profiles vary with radio frequency but usually with a time-invariant frequency dependence.

As examples, pulse profiles for 70 MSPs are shown in Fig. 1 from the NANOGrav timing program. Each is the average

of more than a million single pulses and represents the shape to which all averages from a given pulsar are assumed

to converge, apart from usually subtle differences that we describe below.

Figure 2 shows the simulated properties of single pulses and how they are averaged into profiles for calculating arrival

times. Emitted pulses are inherently stochastic, comprising narrow shot pulses of coherent radio emission. Shots are

grouped incoherently to form single pulses, which can be viewed statistically as an envelope that modulates shots

to give the instantaneous pulse shape. Pulses incident on the ISM are broadened by multipath propagation from

scattering, which operates as a linear filter. The convolution of the broadening function is with the electromagnetic
field components of the pulsar signal and pulse intensities (after squaring field components) are averaged synchronously

with the pulse period following removal of systemetic dispersion delays. The convolution operation does not apply to

single pulse intensities but it does apply to the (hypothetical) ensemble average pulse. Template fitting is essentially

the outcome of cross correlation between a template and a measured profile, as indicated, although it is usually effected

in the frequency domain after Fourier transformation (J. H. Taylor 1992, and § 6).

The ToA of a pulse is the net effect of many processes that occur between emission in a pulsar’s magnetosphere and

reception at an observatory, with subsequent referencing of the ToA to the solar-system barycenter (SSBC) using a

solar-system ephemeris. GW perturbations contribute to the overall noise budget as well as to the signal that is the

target of PTA observations.

Once ToAs are obtained, referencing them to the SSBC requires knowledge of astrometric parameters of the pulsar

(location, proper motion, and parallax), determinable by fitting to a multiyear sequence of ToAs or through very-long-

baseline interferometry (VLBI).

To elucidate the complexity of ToAs, we relate the emission time te in a pulsar’s magnetosphere at location xe to the

topocentric arrival time tA at an observatory location xo (with implicit measurement errors),

tA[xo(tA), ν)] = te[xe(te, ν)] + tprop(ISM, ϕgrav, ν) + tgw(tA), (3.1)
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Figure 1. Pulse profiles (total Stokes intensities) at L-band for 70 MSPs timed by NANOGrav. Profiles are shown for a full
phase cycle and are ordered by increasing pulse period from left to right. The pulse period is shown in milliseconds at the top
right of each profile. Of this sample, only J1903+0327 shows an asymmetry caused by interstellar scattering.

where tprop(ISM, ϕgrav, ν) lumps together the plasma and (non-GW) gravitational delays associated with propagation

to the observatory; tgw is the gravitational perturbation. Chromatic contributions to tA are signified by the dependence

on radio frequency ν. Referral to the SSBC involves compensation for the Römer and relativistic clock delays with a

term ∆tE,SSBC, tSSBC = tA + ∆tE,SSBC.

3.1. What limits arrival time precision and timing predictions?

ToAs are obtained by template matching to average profiles which deviate from the template at minimum from

radiometer noise that adds to the pulsar signal. If ToA precision were determined solely by the limitations from
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Nanoshots
( t < ns)

Intrinsic signal

Fields
(1 pulse) * =

Pulse broadening Scattered pulse

Intensities
(1 pulse)

Average
profiles
(N 1)

Profile

Ensemble
averages * =

Template

Template
fitting Template Profile = CCF

ToA
Figure 2. Graphical display of the averaging of singles pulses to form pulse profiles from which ToAs are obtained using
template fitting. The asterisk and circled asterisk denote convolution crosscorrelation operations, respectively.
Columns: (1) the intrinsic (emitted) signal; (2) interstellar broadening functions; and (3) the net scattered pulses.
Rows: (1) nanoshots, the fundamental units of coherent emission; (2) field or ‘voltage’ quantities for a single pulse; (3) intensity
quantities equal to the squared magnitudes of row (2); (4) average intensities for a large number of pulses; (5) ensemble averages;
and (6) calculation of ToAs by fitting a template to an individual profile.
Nanoshots and field quantities are complex if quadrature mixers are used to obtain baseband voltages; real and imaganary
parts are shown in black and red, respectively. In practice, average profiles combine two independent polarizations to form the
intensity Stokes parameter. Template fitting is typically implemented by least squares fitting in the Fourier domain. Formally,
this is identical to using the maximum of the cross correlation function (CCF) to determine the ToA but it has significant
practical advantages.

radiometer noise, it would be feasible to achieve sub-ns precision for the brightest pulsars12. However, the real world

intrudes on predictions based on idealized matched filtering.

Precision commonly refers to the repeatability of measurements in contrast to accuracy, which refers to the fidelity of

measurements to the true values of some quantity. Arrival times are affected by a slew of systematic and random errors

but their true values are unknown. We must rely on the self consistency of measurements with underlying physics.

Binary pulsars are the only examples in the pulse timing context where the relativistic descriptions of their orbits can

provide multiple constraints on measurement (and model) fidelity. Essentially all other timing contributions lack any

ground truth at the sub-100 ns level.

In our analysis, we distinguish between phenomena that affect the time-tagging of pulses — TOA estimation — and

the astrophysics of the pulsar clock. This distinction is illustrated by considering delta-function pulses with infinite

12 A notable example is the bright MSP J1939+2134 (B1937+21), with P = 1.56ms, S0.4GHz = 240mJy, and W = 38µs (R. N.
Manchester et al. 2005). Expressions and quantities detailed in later sections (e.g. Eq. 6.8) are evaluated with an integration time of
103 s and bandwidith of 0.1GHz on a large highly optimized telescope with Ssys = 1 Jy. For example Ssys ∼ 1.24 Jy at 1.4GHz for the
FAST telescope (H. Xi et al. 2022), though it does not operate currently at 0.4 GHz), the RMS timing error would be σtS/N

≃ 0.04 ns.

At 1 to 2 GHz, the lower flux density S1.4GHz = 14mJy still yields σtS/N
≃ 0.2 ns that is much smaller than achieved ToA precision.
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S/N, whose TOAs have no uncertainties but timing residuals result from stochasticity of spin rates, emission times,

and propagation through the ISM.

ToA errors are often dominated by radiometer noise but in other cases by sometimes larger effects, namely pulse jitter

intrinsic to pulsars that distorts pulse profiles from the template shape and diffractive scintillation that also causes

stochastic changes in pulse shape as well as modulating the flux density, yielding volatility in ToA precision.

Groupings of terms are shown schematically in Eq. 3.2, including gravitational wave perturbations comprising two

terms associated with the dimensionless strain at the Earth and at the pulsar.

tSSBC =

Deterministic Terms
spindown polynomial

astrometric terms
pulsar orbit

pulse shape vs. ν

+

Stochastic Terms
white noise

(receiver, jitter & ISM)
red noise

(spin, ISM)

+

Systematic Errors
planetary ephemeris
time transfer (GPS)
observatory clocks

polarization calibration

+
Gravitational Wave Perturbations

Earth term + Pulsar term
(3.2)

Several broad questions arise when assessing the utility of an MSP for precision timing:

1. How stable is the spin rate of a NS?

2. How well are emission regions and directions locked to the spin phase of the NS?

3. How are pulses modified and delayed by the ISM? and

4. How well can pulses be time tagged at an observatory and referred to the barycenter of the solar system?

The first two issues relate to the quality of a NS as a clock while the last two involve determination of when pulses

arrive as measured against an observatory clock. Related to these questions is the distinction between pulse phase jitter

and red spin noise. Phase jitter is a zero mean process with respect to a fiducial point in the pulsar magnetosphere

and is physically associated with variations in location and relativistic beaming. Spin noise, however, represents actual

departures in the rotational phase from that of a smoothly spinning down object.

The relative contributions of three effects relevant to measuring arrival times can be found in Table 2 along with
a prominent subset of the many distinct effects comprising the overall timing error budget, namely spin noise and

ISM propagation effects. Nominal values are given by the coefficients in column (3) and are based on typical values

of observing parameters (see table footnotes) except for the telescope sensitivity (the system equivalent flux density

(SEFD), Ssys = 1 Jy), which is an order of magnitude better (i.e. smaller) than for a 100-m class telescope and about

half the value for the Chinese Five Hundred Meter Aperture Spherical Telescope (FAST). The first three entries in the

table correspond to rapidly changing errors and are listed in order of (current) importance: radiometer noise (finite

signal to noise ratio), phase jitter (intrinsic to pulsars), and diffractive scintillations from turbulence in the ISM. The

remaining, slowly changing processes alter arrival times due to emission and propagation delays but do not alter the

precision of individual ToAs.

For MSPs used in PTAs, short-term timing errors are typically dominated by radiometer noise but a bright MSP like

J1939+2134 is significantly affected by jitter and scintillation. In §7.3 we discuss the crossover between noise and

jitter-dominated ToAs and the important consequence that improvements in telescope sensitivity do not benefit ToA

precision once it is jitter or scintillation dominated.

Another conclusion is that the slowly changing processes listed in the table can also exceed, by a large multiple, the

ToA precision obtained in decades-long data sets. J1939+2134 is again illustrative in this regard because strong red

noise from spin or orbital noise completely dominates the overall timing error budget.
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The inventory and properties of timing effects in Tables 1, 2 and Eq. 3.2 suggest a schematic model for arrival times

at the SSBC13,

tν = t∞ +
[
∆tS/N + ∆tJ + ∆tDISS

]
fast

+
[
∆tspin + ∆tPBF + ∆tDM(t) + ∆tDM(ν)

]
slow

+ ∆tSS + ∆tInstr + ∆tISM,other, (3.3)

where t∞ is the arrival time extrapolated to infinite frequency that would be measured if there were no contributions

from intervening plasmas and if all deterministic terms (e.g. regular spin phase, orbital delays, dispersion terms, astro-

metric terms, etc.) were modeled perfectly. Included in t∞ is the perturbation from GWs and any other gravitational

effects, such as lensing from intervening objects. GW perturbations can be stochastic, oscillatory, or burst like. GWs

passing through the solar system generate correlated perturbations while those passing near pulsars are uncorrelated

between pulsars. The delays that perturb t∞ are a mixture of achromatic, mildly chromatic, and strongly chromatic

terms, as presented in the paper. The next seven terms adding to t∞ in the first line of Eq. 3.3 correspond to the

items in Table 2 and are grouped into ‘fast’ and ‘slow’ variations with characteristic times of seconds to hours and days

to years, respectively. Time offsets between the topocentric arrival time and the SSBC arrival time are contained in

∆tSS, which includes the Römer, Einstein, and Shapiro delays. Instrumental terms are included in ∆tInstr (observatory

clock offsets, variable electronic pathlengths, polarization calibration errors) and ∆tISM,other, which can include angle

of arrival effects due to refraction in the ISM, which couples to errors associated with reference of arrival times to the

SSBC. Detailed timing models for binary pulsars and time transfer to the solar system barycenter can be found in R.

Blandford & S. A. Teukolsky (1976); D. C. Backer & R. W. Hellings (1986); T. Damour & N. Deruelle (1986); O. V.

Doroshenko & S. M. Kopeikin (1990); I. H. Stairs (2002) and R. T. Edwards et al. (2006).

While the tremendous successes of pulsar timing applications pertain to t∞, the focus of this review is on the stochastic

terms in Eq. 3.3 with the goal of allowing quantitative evaluation timing accuracy on a term by term basis. As well

as being pulsar and telescope dependent, the net results are also a strong function of the procedures used in a timing

program. For an individual pulsar, timing precision is ultimately limited by the S/N and width of the measured

pulses, on the spin stability of the NS, and on stochastic variations from the ISM. In PTA work, overall precision can

be maximized by pulsar triage, avoiding pulsars that are dim and show excessive spin or interstellar noise. Even then,

white and red noise from finite pulse S/N, low-level spin variations, and ISM effects will contend with GWs from the

stochastic background and from individual sources. In order to cover all possible situations involving radio timing, we

discuss a comprehensive set of perturbations that originate everywhere along the line of sight, from inside the NS to

the output of a receiver system.

Our treatment does not cover ‘noise modeling’ in the sense that it is used in analyses of collections of arrival times. That

term typically refers to the covariance matrix used in frequentist or Bayesian statistical inference of model parameters.

Instead, our aim is to characterize noise contributions and to differentiate between those effects that can or cannot be

corrected for or otherwise mitigated. Given the slate of options for possible mitigations, it is clear that noise modeling

is necessarily methodology dependent. Of course any effect that cannot be mitigated should be included in the noise

covariance matrix.

4. PULSAR SPIN STABILITY AND ORBITAL NOISE

The spindown rate ḟs ≡ dfs/dt of nonaccreting NS is typically modeled with a power law ḟs ∝ fs
n, where n is the

braking index. Magnetic dipole radiation corresponds to n = 3 while n < 3 for the few values estimated from timing

measurements, presumably due to departures from dipole fields and induced currents in the magnetosphere (A. Melatos

1997; A. F. Vargas & A. Melatos 2024, and references therein). This yields a spindown phase written in terms of the

phase, spin rate, and its derivative at fiducial epoch t0,

ϕspin(t) = ϕ0 + fs0τ0

(
n− 1

n− 2

){[
1 +

t− t0
τ0

]n−2
n−1

− 1

}
≃ ϕ0 + fs0(t− t0) +

1

2
ḟs0(t− t0)2 +

1

6
f̈s0(t− t0)3 · · · ,(4.1)

13 The form given here is a streamlined version of a detailed expression in Eq. 17.17 that encompasses the span of processes analyed in the
paper.
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where the spindown time is τ0 = fs0/(n − 1)ḟs0 and the approximate equality holds for t − t0 ≪ τ0. This is a good

approximation since τ0 is typically millions of years for CPs and >Gyr for many MSPs. Pulse phase models necessarily

include a quadratic or cubic polynomial to account for spindown, causing fits to arrival times to remove low frequency

power from other contributions, as discussed later.

Deviations from the smooth spindown phase result from processes occurring both inside the neutron star and in the

magnetosphere. These comprise distinct events (glitches and microjumps) and spin noise, a sustained process distinct

from glitches and more relevant to PTA programs.

Glitches comprise rapid spinups ∆fs/fs ∼ 10−9 to 10−6, often combined with jumps in frequency derivative ∆ν̇.

Glitch signatures are largely ∆fs > 0 and ∆ḟs < 0 (or +,−) in form, with some exceptions. Glitches are more common

in young pulsars with large spindown rates (ν̇) and amplitudes of ∆ḟs are correlated with those of ∆fs; the latter

has a bimodal distribution with peaks near ∆fs ∼ 10−8 Hz−1 and 10−5 Hz−1 (A. Basu et al. 2022). Glitch recovery

corresponds to relaxation of the spin rate ν(t) to its pre-glitch trajectory. In some cases this recovery is incomplete

before the next glitch occurs while in others the recovery is slow or indiscernible. Evidently, glitches are primarily due

to transfer of angular momentum from vortices in the neutron superfluid to the NS’s crust.

Despite the propensity for glitch activity in young pulsars, small, rare glitch-like events have been identified in two

MSPs: PSR B1821−24 in the globular cluster M28 (I. Cognard & D. C. Backer 2004) and J0613−0200, an MSP included

in PTAs (J. W. McKee et al. 2016). These are much smaller in amplitude with ∆fs/fs ≲ 10−11 and |∆ḟs/ḟs| ≲ 10−4.

The J0613−0200 event follows the (+,−) signature of large glitches, in contrast to the (+,+) signature for B1821−24.

It is unclear if these events have the same physical origin as large glitches. Fortunately, MSP events are rare, having

occurred only twice in a few thousand pulsar-years in MSP timing programs.

Spin noise, as used here, refers to sustained stochastic variations in phase distinct from those caused by glitches (A.

Parthasarathy et al. 2019, and references therein). Some of these may arise from internal torque variations from

crust-superfluid interactions or crustquakes. The interplay of spin noise and glitches while estimating parameters of a

two-component crust-superfluid model is recently discussed by N. J. O’Neill et al. (2024), who employ Kalman filters as

part of the modeling. Other variations are clearly caused by changes in the magnetic torque responsible for spindown

(e.g. M. Kramer et al. 2006a). An early overview of possible effects was given by J. M. Cordes & G. Greenstein (1981).

4.1. Types of spin noise

Empirically, spin noise is manifested as several types of variations in spindown rate ḟs (Fig. 3) or in time-correlated

timing residuals (Fig. 4):

1. Slow, smooth variations with no evidence for individual features and a red spectrum with a steep power law

component, SR(f) ∝ f−xspin with a spectral index xspin ∼ 4 to 6 (F. D’Alessandro et al. 1997).

2. Bandlimited spin noise, similar to the first case, but with a quasi-periodic appearing time sequence in ḟs, signifying

a narrower range of frequencies than for a power law spectrum.

3. Individual events (microjumps) in spin frequency or its derivative that individually have either sign, unlike

glitches which largely have ∆ν > 0 and ∆ν̇ < 0 (CD85; F. D’Alessandro et al. 1995) For the Vela pulsar,

microjump amplitudes in both ν and ν̇ are about 100 times smaller than glitch amplitudes (J. M. Cordes et al.

1988). Data spans encompassing many events show consistency with a power law spectrum with slope dependent

on whether the spin phase is dominated by microjumps in ν or in ν̇.

4. Switching between discrete values of spindown rate ḟs that persist for weeks to years (e.g. M. Kramer et al.

2006a; A. Lyne et al. 2010). In some pulsars, state switching is quasi-periodic (e.g. M. J. Keith & I. C. Niţu

2023) and is consistent with stochastic resonance in the CP B1931+24. Fig. 3 shows quasiperiodicity in ḟs for

four canonical pulsars over time spans of up to 32 yr. Recent work (M. J. Keith et al. 2025) has shown that

correlations between profile changes and spindown rate are quite common on time scales of tens to hundreds of

days. State switching on shorter time scales (seconds to hours), manifested as nulling, profile mode changes, or

quantized rates of subpluse drift, appears consistent with Markov processes (J. M. Cordes 2013). State switching

so far appears to be a phenomenon occuring primarily in CPs (N. Wang et al. 2007). Nulling, for example, is
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either absent in MSPs (e.g. K. Rajwade et al. 2014; S. Z. Sheikh & M. G. MacDonald 2021) or occurs on too

fast a time scale (e.g. MSP B1957+20; N. Mahajan et al. 2018) to manifest stochastically in timing data.
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Figure 3. Time series of ḟs for four pulsars from M. J. Keith & I. C. Niţu (2023) (data downloaded from zenodo.7664166).

Red noise in pulsar residuals has been interpreted in terms of random walk processes (e.g. P. E. Boynton et al. 1972;

J. M. Cordes & D. J. Helfand 1980; S. M. Kopeikin 1997) and analyzed with a variety of time-domain (e.g. CD85,

F. D’Alessandro et al. 1997) and frequency domain methods (e.g. E. J. Groth 1975; J. E. Deeter & P. E. Boynton

1982; W. Coles et al. 2011; R. M. Shannon et al. 2013). The first two types of spin noise listed above are amenable to

spectral methods. Alternatives to Fourier based methods are necessary because the underlying spectra are steeper than

f−2, causing spectral leakage and mis-estimation of the spectral index. Principal component analysis, autoregressive

(AR) model fitting (identical to maximum entropy methods), Cholesky decomposition, or Bayesian model fitting avoid

leakage effects. Structure functions are useful because the spectral index is related to the structure function exponent.

The third and fourth types of spin noise are best analyzed with time-domain methods if characterization of discrete

events is the primary goal. Structure functions, for example, can be employed for testing the reality of apparent events

in residual time series (CD85).

4.2. Structure functions

Structure functions are a useful tool for parameterizing red spin noise that complement frequency-domain methods.

Following J. Rutman (1978), CD85, F. D’Alessandro et al. (1995), and M. T. Lam et al. (2015), the mth order structure

function of the spin phase14 is the mean-square expectation

D
(m)
ϕ (t, τ) ≡ ⟨[∆(m)

ϕ (t, τ)]2⟩, (4.2)

14 We freely refer to the phase in either units of cycles or temporal units (usually microseconds), depending on the context.
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where the mth phase increment is

∆
(m)
ϕ (t, τ) ≡

m∑
ℓ=0

(−1)ℓ
(m
ℓ

)
ϕ [t+ (m− ℓ)τ ]. (4.3)

Phase increments are useful for removing trends in time series. A polynomial of order m − 1 is removed by the mth

order increment, so the mean value of a time series is removed by the first order increment ∆
(1)
ϕ = ϕ(t + τ) − ϕ(t)

while a linear trend is removed by the second order increment. Removal of a quadratic by the third order increment

implies that the structure function for timing residuals formed by fitting and removing a quadratic spin phase, ϕ̂2(t),

is identical to the structure function of the original phase. I.e. if R(t) = ϕ(t) − ϕ̂2(t), then D
(3)
R (τ) = D

(3)
ϕ (τ). In

practice, fitting functions include more terms than just the spindown polynomial, but these remove much less variance

of the red noise.

Phase increments vs. t are useful for event detection in the phase or one of its derivatives. A step function in the kth

derivative appears as a pulse in the (k + 1)th increment and the corresponding structure function is the variance for

a comparison Gaussian process that serves as a null hypothesis for the presence of individual events, as discussed in

CD85 (§ IVa).

Structure functions are good probes of non-stationary, red noise processes because they are less vulnerable to spectral

‘leakage’ by virtue of the fact that they act similar to derivatives, whose spectra are less steep than the original

process15. The power spectrum Sϕ(f) is defined so that the phase variance is the integral over non-negative frequencies

⟨ϕ2(t)⟩ ≡
∫∞
0
df S(f). To keep notation simple, spectrum can correspond to any or all of the stochastic phase terms

discussed earlier and it can stand for either the pre-fit phase or post-fit residuals.

The phase autocorrelation function (ACF) Rϕ(τ) is the Fourier transform of the spectrum using a Fourier kernel

e2πifτ . Any time (or long term epoch) dependence of the ACF is implicit but we recognize that phase fluctuations

may have nonstationary statistics. Red noise combined with a finite data span T has this property and the phase

variance σ2
red(T ) = Rϕ(0) generally depends on T raised to some positive power.

Structure functions of any order can be written in terms of the ACF and thus related to the spectrum by (J. Rutman

1978)

D
(m)
ϕ (τ) =

∫
df Sϕ(f) sin2m(πfτ). (4.4)

Depending on the process, one or more of the SFs can be independent of time and depend only on τ . This is more

likely for higher order SFs. The relevant frequency range for the ensemble average implied in Eq. 4.4 is determined by

the spectrum itself, but for finite data sets of length T , the lower frequency limit for the spectrum of phase residuals

is fl ≡ η/T where η ≃ 1 depends on the fitting function used to form the residuals. The upper frequency limit fh
becomes the Nyquist frequency fNy = 1/2∆t for data sampled at time intervals ∆t.

4.3. Structure function slopes and spectral indices

Definitions for the variety of spectral representations used in pulsar timing are given in Appendix B. For a power-law

spectrum between low and high frequencies fl, fh,

Sϕ(f) = S0f
−xred , fl ≤ f ≤ fh, (4.5)

the appropriate order of structure function to apply to the phase (or residual) is m > (xred − 1)/2. This specification

yields an SF that is independent of T and has a scaling τxred−1 vs. lag τ . Otherwise the scaling is τ2mT xred−1−2m,

whose τ dependence is uninformative about the spectral shape.

Random walk processes are useful models for spin noise because it is physically plausible that discrete jumps in spin

phase, spin frequency or torque, and spin frequency can occur. Referring to these as kth order random walks with

k = 1, 2, 3 respectively, they correspond to power-law spectra ∝ f−2k.

15 The Fourier derivative theorem states that dx(t)/dt of a process with spectrum Sx(f) has a spectrum (2πf)2Sx(f).
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For most pulsar data, the appropriate order of structure function to use for spectral constraints is m = 3, for two

reasons: (a) it is uninfluenced by removal of the quadratic spin phase, ϕsd(t) = ϕ0 + fst + ḟst
2/2; and (b) red noise

processes are evidently as steep as xred = 6, requiring m > 2.5. However, some pulsars show shallower spectra that

allow lower-order SFs to be informative.

Measured phases include white noise ϕwn with variance σ2
wn so structure functions of the phase, ϕ(t) = ϕred + ϕwn(t),

where the two terms are uncorrelated, have the form for τ > 0,

D
(m)
ϕ (τ) = amσ

2
wn +D

(m)
ϕ,red(τ), (4.6)

where a1 = 2, a2 = 6, and a3 = 20 (CD85, Table 3). If red noise dominates the white noise at large lags, the scaling

index of the SF ∝ τxred−1 yields a determination of xred by fitting the SF in log-log space. The phase variance of the

red noise,

σ2
red(T ) =

S0T
xred−1

xred − 1
, (4.7)

then yields an, estimate for the spectral coefficient,

S0 = (xred − 1)T−(xred−1)σ2
red(T ), (4.8)

where it is assumed that fNyT ≫ 1 and xred > 1.

The total phase variance is the quadratic sum of the white and red noise variances, σ2
ϕ(T ) = σ2

wn +σ2
red(T ). Estimation

of σ2
red(T ) can use the quadratic difference σ2

red(T ) = σ2
ϕ(T ) − σ2

wn for cases where the red noise is strongly dominant

and the white noise variance is obtained using the structure function in Eq. 4.6 for small lags where the second term

is negligible (as in CD85). Alternatively, the red noise variance can be obtained from the Bayesian posterior PDF for

the model in Eq. 4.6.

The dependence of the red noise variance on data span length T can also be used to determine S0 and xred. This

requires that the red and white noise variances are separable for a wide range of sub-spans, which is possible for pulsars

with large enough red noise and numerous samples across the total span (e.g. CD85).

Red spin noise of some pulsars has been demonstrated to be a mixed process, comprising a superposition of events

in both P and Ṗ . Individually, each type of event would produce spectral indices xred = 4 and 6 and SF scalings

D
(3)
ϕ ∝ τ3 and τ5, respectively. The resulting SFs generally comprise at least two red-noise terms, with more than two

if events in P and Ṗ occur together. For several CPs, the asymptotic scalings of σ2
red(T ) for large T and of D

(3)
ϕ (τ)

for large τ are dominated by events in Ṗ (CD85; J. M. Cordes et al. 1988; F. D’Alessandro et al. 1995), corresponding

to a strong low frequency component to the spectrum with xred ≃ 6.

Timing residuals and tructure functions are shown in Fig. 4 for three MSPs, two CPs, and one magnetar (J1622-

4950). The MSPs shown in the top three panels have varying degrees of red noise, with B1937+21 having the largest,

J1909−3744 having smaller, and J1643−1224 with minimal red noise but distinctly non-white variations. Accordingly,

the structure functions in the right-hand column go from steepest to flattest. The Vela pulsar (J0835−4510) displays

strong red noise with a steep SF. Red noise for the other CP, B1929+10, comprises discrete events (see CD85) that

collectively yield a steep SF. Finally, magnetar J1622−4950 in the bottom row has the strongest, steep spectrum red

noise, consistent with spin noise being highly correlated with spin frequency derivative and, thus, surface magnetic

field strength of the NS.

Figure 5 shows spectral index estimates xred = xSF + 1 derived from SF slopes xSF evaluated from timing data in the

JPL and UTMOST timing programs. The estimates formally range between xred = 2 and xred = 8 but maximize at

xred ∼ 4.5, which is intermediate between the slope expected for spin noise comprising step functions in fs and ḟs.

4.4. Allan variance for red noise

Frequency standards and clocks are often characterized using structure functions (J. Rutman 1978; R. Rutman & F. L.

Walls 1991) , including the Allan variance (D. W. Allan 1966) and the same tools have been applied to pulsar timing
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Figure 4. Timing residuals (left) and structure functions (SFs, right) for a sample of pulsars. Top three rows: millisecond
pulsar data from NANOGrav’s 15 yr data relase (G. Agazie et al. 2023b). Bottom three rows: residuals for three long period,
high magnetic field pulsars. Data for pulsars J0835-1224 (the Vela pulsar) and J1622-4950 are from the UTMOST timing
program (M. E. Lower et al. 2020) and data for B1929+10 are from the JPL timing program (CD85; G. S. Downs & P. E.
Reichley 1983). In each SF panel in the right column, the type of SF is designated as D(m) with m = 2 or 3, blue dotted points
are estimates of the binned structure function and the black circle represents the SF value due to white noise only. Slanted lines
show scaling laws D(m)(τ) ∝ τxSF for xSF = 2, 4, 6.

data (CD85; D. C. Backer & R. W. Hellings 1986; D. N. Matsakis et al. 1997; J. G. Hartnett & A. N. Luiten 2010).

Though MSPs once rivaled terrestrial frequency standards in frequency stability, new technologies have surpassed the

stability of the most stable pulsars. Nonetheless, pulsars are unique tools for applications in fundamental astrophysics

and it is useful to characterize their stability using standard methods.

Let fs(t) be the time-dependent frequency of a clock or synthesizer and define the normalized frequency, y(t) =

fs(t)/⟨fs⟩, and its running average over an interval τ ,

y(t) =
1

τ

∫ t+τ

t

dt ′ y(t ′). (4.9)

The Allan variance is the mean-square of the first increment of y(t), ∆
(1)
y (t, τ) ≡ y(t+ τ) − y(t),

σ2
y(t, τ) =

1

2

〈
[y(t+ τ) − y(t)]2

〉
=

1

2

〈[
∆

(1)
y (t, τ)

]2〉
. (4.10)

The Allan variance is therefore proportional to the first order structure function of y, which is written in terms of the

second order phase SF,

σ2
y(t, τ) =

1

2
D(1)
y (t, τ) ≡

D
(2)
ϕ (t, τ)

2(⟨fs⟩τ)2
. (4.11)

The SF for timing residuals R(t) = fsδϕ(t) is σ2
y(t, τ) = D

(2)
R (t, τ)/2τ2.
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Figure 5. Histogram of inferred spectral indices for red noise assuming it has a power-law spectrum. Spectral indices are
estimated from the asymptotic slope of the third order structure function using the relation xred = xSF + 1.

Extension: For some processes the Allan variance is independent of t and therefore not dependent on the data set length

and the explicit t dependence is usually dropped from σ2
y(t, τ). For other processes with higher-order nonstationarity,

the t dependence remains. For example, a random walk in ν̇ (i.e. in the second derivative of the phase) requires a

third-order SF to eliminate any t dependence. This can be used to define an analogous Allan-variance-like quantity

(CD85)

Σ2
y(t, τ) =

1

9
D(2)
y (t, τ) =

1

9

〈[
∆

(2)
y (t, τ)

]2〉
=
D

(3)
ϕ (t, τ)

(3⟨fs⟩τ)2
(4.12)

Figure 6 compares the Allan deviation (AD) σy of four long period, high magnetic field CPs and four MSPs with a

laser-cooled cesium fountain frequency standard (T. Heavner et al. 2005). For small lags τ the AD for pulsars follows

that expected for white noise in pulse phase, σy ∝ τ−1 while the cesium frequency standard shows white noise in

frequency, corresponding to σy ∝ τ−1/2. For τ ≳ 30 to 200 d, the CPs show upturns in the AD due to achromatic

spin noise. The MSPs show much smaller ADs. For the two best MSPs in PTA timing samples, J1713+0747 and

J1909-3744, the ADs decline monotonically, with only a slight deviation from a white-noise scaling for J1909-3744,

consistent with the NG15 noise modeling (G. Agazie et al. 2023c) using alternative methods. The MSP J1939+2134

(B1937+21) has the lowest AD at small lags (from white noise) but is the worst MSP in terms of correlated red noise,

as seen for the large upturn in AD at τ ∼ 100 d. This red noise is similar, statistically, to that seen from spin noise in

CPs but an alternative explanation in terms of a circumpulsar asteriod belt has also been explored (R. M. Shannon

et al. 2013). The large-DM MSP J1903+0327 shows a shallow upturn from a white-noise only AD that is apparently

interstellar in origin. In particular, this pulsar manifests the effects of incomplete correction for the combined effects

of dispersion and scattering (pulse broadening). For comparison we show an AD curve for length of day variations of

the Earth, which shows worse stability than most pulsars but is far more stable than the magnetar J1622−4950 also

shown (data from M. E. Lower et al. 2020).
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shown are curves for the magnetar J1622−4950 (M. E. Lower et al. 2020) and for length of day variations of the Earth
(https://www.iers.org/IERS/EN/DataProducts/data.html). Dashed lines correspond to white noise with the labeled RMS val-
ues.

4.5. Scaling laws for the variance and spectrum of red spin noise

Spin noise is well established for canonical pulsars (CPs), those with spin periods longer than ≳ 10 ms and with

surface magnetic fields ≳ 1011 G. However, the underlying physics of torque variations and superfluid dynamics are

not well understood. Spin noise has a very red power spectrum that causes the variance in timing residuals to have

non-stationary statistics dependent on the length of the data span, T . While there is a correlation of the spin-noise

variance with spin frequency and its time derivative, it is not known how well it extends to MSPs.

Past analyses have used a scaling law for the RMS spin noise after removal of a quadratic fit,

σred,2(T ) = C2 fs
αr |ḟs|βr T γr , (4.13)

with parameters C2, αr, βr and γr. The large scatter about this relationship for different objects is characterized using

a log-normal distribution with standard deviation σlnσred,2(T ).

R. M. Shannon & J. M. Cordes (2010) used a large body of measurements on canonical pulsars and a limited amount

on MSPs to estimate parameters of the scaling law. At the time, only two MSPs showed red-noise similar to that

of CPs [J1939+2134 (B1937+21) and J1824−2452A], while only upper limits were available on other MSPs. The

maximum likelihood estimates of the spin-noise parameters for the ‘CP+MSP’ fit in their Table 1 are

C2 = 5+2.4
−1.6 µs, αr = −1.4 ± 0.1, βr = 1.1 ± 0.1, γr = 2 ± 0.2, (4.14)

for fs in Hz, |ḟs| in 10−15 Hz s−1, and T in yr. The empirical spread about the scaling law is σlnσred,2
= 1.6 ± 0.1.

Errors on parameters are ±2σ.

Similar scaling laws have been estimated by others. M. T. Lam et al. (2017) included more MSPs than SC10 in their

analysis and obtained for the ‘CP+MSP10,PPTA +NANO’ fit in their Table 4, C2 = 6+1.3
−1.6 µs, αr = −1.32 ± 0.04, βr =

https://www.iers.org/IERS/EN/DataProducts/data.html
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1.08 ± 0.03, γr = 1.96 ± 0.08 and σlnσred,2
= 1.56 ± 0.05. M. E. Lower et al. (2020) analyzed non-recycled pulsars

(aka CPs) to obtain αr = −0.84+0.47
−0.49 and βr = 0.97+0.16

−0.19 and demonstrated consistency with SC10 and other previous

results G. Hobbs et al. (2010); A. Parthasarathy et al. (2019).

Figure 7 shows the spin noise scaling law projected onto the period-period derivative (P–Ṗ ) plane with various pulsar

types identified. The gray bands indicate the ranges of spin-parameter values that yield the same RMS ToA for data

spans of 15 to 30 yr.

Fluctuation spectrum: The T dependence of σred,2(T ) ∝ T 2±0.2 corresponds to a power-law spectrum ∝ f−xred with

xred = 1 + 2γr = 5 ± 0.4. The spectrum is calculated from σred,2(T ) using Eq. 4.7 and a value for the effective

lower-frequency cutoff η/T with η ≃ 1,

SR(f) = (xred − 1)η(xred−1)σ2
red,2(T )T 1−xredf−xred . (4.15)

Substituting for σred,2 from Eq. 4.13 yields

SR(f) = 2γ(C2fs
αr |ḟs|βr)2f−xred . (4.16)

Note there is no net dependence on the length of the time series T .

Complications: The given spin noise characterization represents a statistical description of the pulsar population in

the simplest terms. Any specific pulsar can depart from this description in both the amplitude of spin variations

and in the scaling law indices, αr, βr, and γr. Moreover, γr and hence the frequency scaling index xred = 1 + 2γr for

a pulsar can vary depending on the data span T . This arises from the underlying physics of the spin noise, which

appears to comprise individual events in the spin torque having the idealized forms of narrow pulses or step functions

or combinations of the two. These give fluctuation spectra ∝ f−4 and ∝ f−6, respectively. The population average

γr ≈ 5 suggests that both kinds of events are seen across the population.

Another possible departure from the picture presented here is that achromatic timing noise may have a different cause

than spin fluctuations and the stochastic GW background. For example, orbital noise from an asteroid belt can produce

a power-law residuals spectrum; asteroids may plausibly grow out of debris from the accretion driven spinup proccess

in some cases (e.g. R. M. Shannon et al. 2013; R. J. Jennings et al. 2020). This is discussed further in Section 4.7.

4.6. Comparison with the nanohertz GW stochastic background

It is useful to express the red-noise spectrum in terms that can be compared with those used for the long-wavelength

GW spectrum. The characteristic dimensionless strain is represented with a dimensionless amplitude Agw and a

power-law frequency dependence,

hc(f) = Agw

(
f

fref

)−xh

(4.17)

and the corresponding spectrum for arrival-time residuals is

S
(gw)
R (f) =

A2
gw

12π2f3

(
f

fref

)−2xh

=
A2

gw

12π2f3ref

(
f

fref

)−(3+2xh)

. (4.18)

Using fref = 1 cy yr−1 with Agw = 10−15Agw,−15
and expressing the spectrum in units of µs2 yr, the spectrum becomes

S
(gw)
R (f) = KSrA

2
gw,−15

(
f

fref

)−xred

(4.19)

with xred = 3 + 2xh and the leading coefficient is

KSr =
10−30

12π2
(µs per yr)2 = 8.41 × 10−6 µs2 yr. (4.20)
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Figure 7. Spin period derivative Ṗ vs. period P in seconds for all pulsars in the ATNF catalog. Ṗ has been corrected for
the Shklovskii effect where possible. (The Shklovskii effect is the contribution to Ṗ from translational motion of a pulsar. It
is insignificant for CPs but can be important for MSPs with small intrinsic Ṗ .) Grey bands indicate the range of RMS timing
variations due to spin noise for data timespans between 15 and 30 years. The estimated spin noise is based on the scaling
relation fit in M. T. Lam et al. (2017) across canonical pulsar, MSP, and magnetar populations (Equation 4.13).

For reference, the simplest form for hc(f) results from a population of supermassive black hole binaries with orbital

decay solely from GW emission, giving xh = 2/3 and xred = 13/3 (M. Rajagopal & R. W. Romani 1995; A. H. Jaffe

& D. C. Backer 2003).

Using the same spectral form, the dimensionless amplitude for red spin noise is

Arsn,−15
=

(
2γr
KSr

)1/2

C2(µs)fs
αr |ḟs|βr ≈ 3.45 × 103 fs

−1.4|ḟs,−15|1.1, (4.21)

(still) with fs in Hz and ḟs in units of 10−15 Hz s−1 and where the approximation uses only the nominal value for C2.

As an example, the highly stable MSP J1909-3744 with ν = 339 Hz and ν̇ = −1.62× 10−15 Hz s−1 gives Arsn,−15
≃ 1.7,

slightly below Agw,−15
≃ 2.4 reported by G. Agazie et al. (2023a). For the pulsar population at large, we compare the

dimensionless amplitude Arsn,−15 for red spin noise with Agw,−15 for the GW stochastic background using histograms

of their ratio Arsn,−15
/Agw,−15

(Fig. 8). The histograms demonstrate that some (but not all) MSPs, which have small

spindown rates, have spin stabilities yielding Arsn ≲ Agw, making them potentially useful for GW detection with

PTAs. We emphasize that additional considerations (e.g. red noise from interstellar propagation and ToA precision

vs. S/N) also determine inclusion of any given MSP in a PTA program, as discussed in §20.
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non-recycled pulsars. The orange histogram is deifned for MSPs, defined as P ≤ 20 ms and Ṗ < 10−17s s−1. The vertical
line indicating Arsn = Agw demonstrates that the nominal red noise for some recycled pulsars is a larger signal than the GW
background.

For fixed spin period, pulsars with smaller Ṗ values have greater spin stability. Invoking Arsn ≤ Agw yields (with P

in s),

Ṗ ≤ Ṗmax = 10−15 s s−1

(
KSr

2γr

)1/2βr
[
Agw,−15

C2(µs)

]1/βr

P 2+αr/βr ≃ 6.08 × 10−19 s s−1P 0.73A0.91
gw,−15

. (4.22)

Fig. 9 shows this condition for Agw,−15 = 2.4 plotted as a black line on the P -Ṗ diagram along with points color coded

for pulsars on above or below the line. Three MSPs are highlighted, two that easily satisfy the condition (J1713+0747,

J1909-3744) and another, J1939+2134 (B1937+21) that is well known to show significant red noise.

4.7. Orbital noise

An orbital companion produces a cyclical TOA variation due to recoil motion of the NS. An ensemble of asteroids

contributes a noise process to ToAs with variance that grows with longer data spans if the maximum orbital period

is longer than the data span length (R. M. Shannon et al. 2013). Recent work on asteroid belts around MSPs with

white dwarf companions (R. J. Jennings et al. 2020) derives asteroid noise spectra for individual MSPs. Asteriods are

distributed in mass as fm(m) ∝ mαa−1 and in orbital radius as fa(a) ∝ aβa−1. For N asteroids with total mass Mbelt

and NS mass M , the spectrum for ToA perturbations is a power law,

Sast(f) =

[
G

(2πM)2

]2/3(
Mbelt sin i

2c
√
N

)2 ⟨m2⟩
⟨m⟩2

[
2βaf

−(2βa+7)/3

3(f
−2βa/3
− − f

−2βa/3
+ )

]
, f− ≤ f ≤ f+, (4.23)

where the frequency cutoffs are related to the extent of the asteroid belt, f± =
√
Ma

−3/2
min,max ≃

√
1.4a

−3/2
min,max for M in

solar masses, frequencies in cy yr−1, and orbital radii in au. The ratio of moments ⟨m2⟩/⟨m⟩2 is determined solely by

the mass ratio r = m2/m1 of the largest and smallest asteroid masses,

⟨m2⟩
⟨m⟩2 =

(αa + 1)2

αa(αa + 2)

[
(rαa − 1)(rαa+2 − 1)

(rαa+1 − 1)
2

]
. (4.24)
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because of their high spin stability are indicated as large black and green circles, respectively, along with another, J1939+2134
(B1937+21, large black circle), that has poor spin stability. The black line delineates the boundary where Arsn = Agw. MSPs
in globular clusters have been excluded because their Ṗ values are perturbed by cluster gravitational potentials.

Evaluating for αa = −5/6 (the steady-state value for self-similar populations of colliding bodies, as determined by J. S.

Dohnanyi (1969)), βa = 1 (corresponding to a uniform distribution in orbital radius), Mbelt = 10−3M⊕ with N = 104

asteroids, a mass ratio r = 10−4, and a NS mass M = 1.4 M⊙,

Sast(f) = 135 ns2 yr

[(
Mbelt sin i/10−3M⊕

)2
N/104

] [ ⟨m2⟩/⟨m⟩2
100

](
f

1 cy yr−1

)−3

. (4.25)

Defining the spectral form Sast(f) = A2
astf

−γa , again for frequencies in cycles yr−1, the dimensionless amplitude is

Aast = 11.6 ns yr1/2

[(
Mbelt sin i/10−3M⊕

)√
N/104

] [ ⟨m2⟩/⟨m⟩2
100

]1/2
(4.26)

γa = (2βa + 7)/3 = 3. (4.27)

Later we compare the spectrum of this achromatic process with other processes.

An example is the interpretation of red noise from the isolated MSP B1937+21 as orbital rather than spin noise (R. M.

Shannon et al. 2013). To match the large measured red noise (§4.3) a total mass Mbelt ≲ 0.05M⊕ extending to at least

15 au yields orbital periods longer than the analyzed data span. This case illustrates that a small debris mass can,

in principle, produce large timing effects. Most well studied MSPs show substantially less red noise than B1937+21,

indicating that any debris disks have very small total masses. Nonetheless, as timing data sets grow longer, the red

noise from an asteroid belt will grow along with other red-noise processes, including spin noise and GWs, although

with a different dependence on data span.

5. ELEMENTS OF PULSAR SIGNALS AND THEIR PROPAGATION

Itemizing the timing error budget requires consideration of emitted wavefields and how they are affected by propagation

through intervening plasmas (along with effects from instrumentation). Before introducing the timing model, we must

first lay out the key elements of pulsar signals, including their basic emission properties and the plasma propagation
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Figure 10. Schematic of emission at radius rem into a direction angle θem. The tangent to the magnetic field line (dotted) is at
an angle θB from the radial vector. The difference between θem and θB is from rotational aberration and gravitational bending
of the ray path. A change in emission radius alters θem, yielding emission directed toward an observer at an offset spin phase,
altering the observed pulse phase. Similarly, a change along a different magnetic field line also changes the observed pulse phase.

effects incurred in the observed signal. Together these elements form a pulsar signal model (e.g. Figure 2), which is

distinct from and a prerequisite for the timing models discussed later.

Radio pulsars emit radiation from their magnetospheres with brightness temperatures as high as 1042 K that entail

coherent emission from highly relativistic particles. Emission radii rem = |xe| are intermediate between the NS radius

R∗ ∼ 10 km and the light cylinder radius rLC = c/Ωs = cPs/2π ≃ 5× 104P km ≫ R∗ for P in s. Beaming is tangential

to the magnetic field (Figure 10) and aberrated by the NS spin into a net emission angle θem relative to the radius

vector xe measured from the NS center. Emission is seen when the beam closely approaches the observer’s direction.

The field direction and aberration angle both depend on the emission location xe.

Collective radiation from large particle numbers is in the form of ‘nanoshots’ i.e. ≲ ns-duration impulses that extend

to ≳GHz frequencies. Individual pulses seen in single spin periods have widths ≳ 30µs and up to hundreds of ms for

CPs. Thus they generally comprise incoherent ensembles of many nanoshots16 with different shapes from one period

to the next owing to variations in both emission radius and coherence strength from the dynamic particle flow. This

variability underlies temporal jitter with respect to strictly periodic emission times.

Evidently particle flows and emission are controlled, in the mean, by the strong magnetic field of the NS, as evidenced

by the convergence of average pulse profiles to distinct shapes, whose stability has been demonstrated over the decades

since pulsars were discovered. (We note that magnetars, by contrast, have dynamic magnetic fields that cause their

average profiles to vary significantly.)

5.1. From fields to baseband voltages

Pulsar processing typically involves manipulation of digitized voltages that are proportional to electric field components

selected by the antenna polarization. The scalar field in a specific polarization p̂ is E(t) = E(t) · p̂ and the field is

typically modified by a transfer function with impulse responseHext(t), which may be polarization specific. The receiver

selects a frequency band according to an impulse response R(t). The net narrowband field is then the convolution of

three real quantities,

E∆(t) = Ei(t) ∗Hext(t) ∗R(t), (5.1)

16 A special case is the young Crab pulsar from which individual nanoshots have been measured (T. H. Hankins et al. 2003)
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where Ei(t) is the initial, emitted field. A baseband mixer translates the field to a complex baseband field through

the operation,

ε(t) =
[
e2πiν0tE∆(t)

]
∗Blp(t), (5.2)

where Blp is a low pass filter that enforces limitation of ε limited to frequencies ν ∈ [−B/2, B/2] with bandwidth

B. We simplify ε by expanding each of Ei, Hext, and R into negative and positive frequency components as (e.g.)

Ei(t) = Ei,−(t) + Ei,+(t). Hermiticity of the Fourier transform Ẽi(ν) requires E∗
i,−(t) = Ei,+(t). Defining baseband

quantities, εi(t) = e2πν0tEi,+(t), hext(t) = e2πν0tHext+(t) and r(t) = e2πν0tR+(t), the baseband field is ε(t) = εi(t) ∗
hext(t)∗r(t)∗Blp(t). By lumping together the last three quantities in the convolution into an effective impulse response,

h(t) = hext(t) ∗ r(t) ∗Blp(t), the baseband field is written succinctly as

ε(t) = εi(t) ∗ h(t), (5.3)

where h(t) is understood to include both astrophysical (wave propagation) and receiver contributions.

Generally the impulse response h(t) in Eq. 5.3 could be polarization dependent because it can include birefringent

propagation, as discussed below, along with scattering. In practice dispersion and Faraday rotation are removed

separately, so h(t) then represents only the effects of scattering along with receiver contributions.

5.2. Stokes parameters from baseband fields

.

Pulsar emission is generally polarized, requiring separate baseband signals for two polarization channels p = x, y

for measurements with linearly polarized antennas or p = r, l for circular polarization. The four Stokes parameters

(I,Q, U, V ) involve auto-and-cross products of εp. Pulsar timing typically makes use of only the total Stokes intensity

I =
∑
p |εp|2 though some studies have explored the use of sharper features in the linearly polarized intensity L =√

Q2 + U2 or in the circular polarization V .

Adopting either a circular or linear polarization basis, the Stokes vector is expressed in terms of two baseband fields,

εr, εℓ or εx, εy,

S =

 I
Q
U
V

 =

 Ir + Iℓ
2R{εrε∗ℓ}
2I{εrε∗ℓ}
Ir − Iℓ

 =


Ix + Iy
Ix − Iy

2R{εxε∗y}
2I{εxε∗y}

 . (5.4)

These are defined without any time averaging, contrary to the usual case, because we wish to consider both the mean

and variance of each Stokes parameter, requiring moments ⟨S⟩ and ⟨S◦S⟩, the latter being the mean of the Hadamard
(i.e. element-wise) product. In the following we also make use of the complex quantity L = Q+ iU .

The variance of the total intensity I is polarization dependent and it also depends on scintillation modulations (J. M.

Cordes et al. 2004). Instrumental polarization is represented as a transformation of the true Stokes vector using a 4×4

Mueller matrix M to give the nominal measured Stokes parameters, Smeas = MS. Without inversion, instrumental

polarization yields additional arrival time errors, as discussed later.

The degrees of polarization are defined in terms of ensemble average Stokes parameters17,

dL =

√
⟨Q⟩2 + ⟨U⟩2

⟨I⟩ ≡ |⟨L⟩|
⟨I⟩ , dV =

⟨V ⟩
⟨I⟩ dp = (d2L + d2V )1/2 ≤ 1. (5.5)

As defined, the variances of the unaveraged Stokes parameters satisfy

⟨|L|2⟩ + ⟨V 2⟩ = ⟨I⟩. (5.6)

17 For pulsar signals it is useful to think of an ensemble average as an average at fixed pulse phase over an ensemble of pulses for which
stationary statistics can apply. Pulsars are thus said to be cyclostationary, at least in the mean. However, all quantities are strong
functions of pulse phase and thus are non-stationary vs. phase.
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This equality follows from the fact that the instantaneous polarization in Nyquist sampled data is effectively 100%.

However, a partially polarized signal varies with time so that

⟨Q⟩2 + ⟨U⟩2 + ⟨V ⟩2 ≤ ⟨I⟩2 (5.7)

Later we need to refer to Stokes parameters of a noiselike polarized signal that is added to unpolarized noise and we

utilize the signal to noise ratio of pulses in each of the Stokes parameters.

The intensity modulation index,

mI =
σI
⟨I⟩ =

(
1 + d2p

2

)1/2

, (5.8)

depends on the total degree of polarization and is smallest for an unpolarized signal.

We need RMS values for the Stokes parameters for calculations of the signal to noise ratios of Stokes-parameter pulse

profiles. Expressed as the ratios of RMS values of L, Q, U , and V to the RMS I, we have

σL
σI

=

[
2(1 − d2V )

1 + d2

]1/2
, (5.9)

σQ
σI

=

[
1 − d2 + 2d2L sin2 2χ

1 + d2

]1/2
, (5.10)

σU
σI

=

[
1 − d2 + 2d2L cos2 2χ

1 + d2

]1/2
, (5.11)

σV
σI

=

[
1 + d2V − d2L

1 + d2

]1/2
. (5.12)

These ratios reflect the number of degrees of freedom in each Stokes parameter and depend on polarization-dependent

correlations such as ⟨IrIℓ⟩ = (1/4)(1 + d2L − d2V )⟨I⟩2. A completely polarized signal (d = 1) has perfectly correlated Ir
and Iℓ and thus fewer degrees of freedom, so the Stokes-I modulation index, mI = 1, is larger than for an unpolarized

signal with mI = 1/
√

2.

The RMS ratios for a completely polarized signal depend on the type of polarization, σL/σI =
√

1 − d2V , σQ/σI =

dL| sin 2χ|, σU/σI = dL| cos 2χ|, and σV /σI =
√

1 − d2L.

For the unpolarized case with d = dL = dV = 0, the ratios are σL/σI =
√

2, and σQ/σI = σU/σI = σV /σI = 1, which

are all equal to or larger than the fully polarized case.

5.3. Pulsar emission is modulated polarized shot noise

Regardless of the radiation physics underlying coherence (e.g. plasma maser vs. charge bunching), the fundamental

radiation unit is a shot pulse narrower than the reciprocal, ν−1, of the observation frequency, e.g. sub-nanosecond.

Large numbers of shots then comprise observed pulses with durations and internal structure from microseconds to

many milliseconds.

Let ∆(t− tj) be a single shot emitted at time tj with a form determined by the emission process and modified by the

temporal response of a receiver. Though narrowband shots in the form of oscillatory wave packets are conceivable,

there is no empirical evidence in support of them; moreover, consideration of broadband shots suffices for our analysis

of pulsar timing.

Pulsar signals are often treated as complex baseband voltages obtained by mixing the signal selected in a single hand

of polarization with a complex local oscillator signal, e−2πiν0t, and low-pass filtering. The baseband signal of Eq. 5.3

for shot noise is then

ε(t) =
∑
j

aj∆(t− tj). (5.13)
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For example, a rectangular receiver bandpass yields ∆(t) = sincBrt ≡ (sinπBrt)/πBrt . The amplitude aj is related to

the peak shot flux density as |aj | = (2πSν0,max,j/cBr)
1/2. A general statistical model would include a joint distribution

fshots(aj , tj); however, empirical and practical considerations imply that it is sufficient to consider shot amplitudes

and delays to be decoupled.

Pulses and their substructures are orders of magnitude wider than shots, requiring variable shot amplitudes aj or

a variable shot emission rate. This is motivated by the amplitude modulated polarized shot-noise (AMPSN) model

(B. J. Rickett 1975; J. M. Cordes 1976; J. M. Cordes et al. 2004; J. M. Cordes & I. Wasserman 2016; K. Nimmo et al.

2022) for a single polarization channel,

ε(t) = a(t)m(t), (5.14)

where a is a real modulation and m is complex noise. In the rest of the paper, we specify the statistical moments of

m as

⟨m⟩ = 0 zero mean
⟨m(t1)m(t2)⟩ = 0 zero correlation
⟨m(t1)m∗(t2)⟩ = σ2

m∆(t1 − t2) variance σ2
m and auto correlation function ∆.

(5.15)

The corresponding single-polarization intensity is

I(t) = a2(t)|m(t)|2 ≡ A(t)M(t) (5.16)

where M(t) has moments ⟨M⟩ = 1 and ⟨M2⟩ = 1 + m2
M written in terms of the modulation index, mM ≡ σM/⟨M⟩.

For dense shot noise with separations comparable or less than shot widths, mM = 1 whereas sparse shots mM > 1.

Most pulsar investigations yield mM = 1 for a few CPs and the MSP B1937+21 (e.g. J. M. Cordes & T. H. Hankins

1979; F. A. Jenet et al. 2001) except for high time resolution studies of the Crab pulsar that have revealed individual

shots (T. H. Hankins et al. 2003; T. H. Hankins & J. A. Eilek 2007).

5.4. Pulse shapes and average profiles

Pulsar timing methodology is usually based on averages of a large number of single pulses, each formed by time

averaging over ∆t ∼ 1µs intervals for MSPs and up to ∼ 1 ms for long period objects. Average profiles are usually

formed with 1024 to 4096 time bins per period. This intrapulse averaging reduces the shot noise modulation index by

a factor (∆tB)−1/2, where the time-bandwidth product ∆t × B is typically ≫ 1. The remaining variance from this

‘self noise’ makes a small contribution to the overall error in ToA estimates, as discussed later.

Amplitude modulations of the self noise involve multiple pulse components with varying amplitudes and pulse phases

in individual pulses that average into the stable forms shown in Figure 1. Pulse components physically correspond

to sub-beam structure in the ‘lighthouse’ beam that rotates through the LoS. This physical view is consistent with
observations showing that jitter is largely independent between components, as substantiated by statistical and Fourier

studies of single pulses going back to the early days of pulsar science. The number of components and their separations

are significant factors in the overall timing variance for a given pulsar. Here we present a suitable model for average

profiles that includes components and their fluctuations.

The envelope of the jth pulse is a sum over nc pulse components,

Aj(t) =

nc∑
i=1

cijA
(c)
ij (t− tij), (5.17)

where subpulse amplitudes cij and delays tij vary statistically about mean values from processes intrinsic to the pulsar

(e.g. jitter) but also from propagation through intervening plasmas (next section). For pulsars, these quantities

generally have well defined mean values that determine the shape of the template profile average at a specific center

radio frequency. For simplicity we have suppressed the radio frequency dependence of Aj because it is relatively gentle.

A few pulsars deviate from this simple characterization, including the Crab pulsar (J0534+2200) that has shown a

secular change in component separations and a few other cases18.
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The average profile is the sum over N pulses,

IN (t) = N−1
N∑
j=1

nc∑
i=1

cijAi(t− tij). (5.18)

A good approximation is that cij and tij are statistically independent of each other and between different pulses

(different j). Pulse sequences from some objects do show correlations in the form of ‘drifting subpulses’ and other

effects, but these do not alter our analysis significantly. Also, for MSPs, these correlations seem to be largely absent.

An illustration of this empirical model is shown in Figure 11. The average profile in the top panel displays several

components. Single pulses comprise subpulses that occur preferentially in these profile components, as demonstrated in

the histogram of the pulse phases in which single-pulse maxima occur. The main panel shows that subpulse amplitudes

and phases occur independently in different components and with different frequencies of occurrence. The average

profile is determined by both the amplitudes of subpulses and their frequency of occurrence in pulse phase.
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Figure 11. Main panel: a sequence of pulses from PSR J0738-4042 (P = 0.37 s, DM = 161 pc cm−3) obtained at 1.38 GHz
with the Parkes telescope (R. Shannon, private communication). Top panel: average profile from the 2500 pulses shown. Middle
panel: counts of pulse maxima vs. pulse phase.

The template shape is idealized as the ensemble average (corresponding to N → ∞),

U(t) = ⟨IN (t)⟩ =
∑
i

⟨cij⟩Ai(t− ⟨tij⟩). (5.19)

In practice, templates are based on finite N averages and application of a denoising procedure to minimize the influence

of off-pulse noise on ToA estimates.

ToAs are calculated through cross correlation or, equivalently, least-squares fitting of the template to a measured

profile. The ToA is given by the maximum cross correlation obtained as the solution of C ′
INU

(τ) = 0 where CINU is

18 The shapes of fast radio bursts (FRBs) can be described similarly but with two significant differences. First, they are not periodic in
the same way as pulsars and, second, the components have different center frequencies and relatively narrow bandwidths.
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the cross correlation function between the template and a finite-sum profile. Differences between U and IN yield ToA

errors that add in quadrature to those from additive noise and template fitting. We refer to these differences as ‘pulse

jitter’ in the ToA error budget.

Implicit in Eq. 5.18-5.19 is that the time t extends over only one period (and thus corresponds to pulse phase ϕ = t/P

for a period P ). This requires alignment of pulses according to a previously generated timing ephemeris. It is also

assumed that plasma dispersion delays have been removed with small enough error that pulse shapes are undistorted.

Identifying and modeling profile components is another method for constructing templates using Gaussian functions.

In this paper we make use of the number and strength of components to forecast ToA errors. An objective approach

to component identification identifies inflection points in the profile U(ϕ) using the first derivative, U ′(ϕ) (where we

now use pulse phase ϕ rather than time). Fig. 12 shows profiles, derivatives, and autocorrelation functions for two

MSPs plotted with solid lines. The red points in the top two panels indicate zero crossings of U ′ where U exceeds a

threshold Umin, yielding nc = 1 for J1909-3744 and nc = 5 components for J1853+1303. The relative contributions to

ToA errors scale as the squares of the component amplitudes.
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Figure 12. Profile component analysis for J1909-3744 (left) and J1853+1303 (right). The top panels show the template U(ϕ),
the middle panels U ′(ϕ)vs. U(ϕ), and the bottom panels the autocorrelation functions of U and U ′. Data are from NANOGrav’s
15-yr data release.

Examples of polarization profiles (Fig. 13) show how Stokes L and V profiles differ from Stokes I and that the degree

of linear polarization can be large. We refer to these profiles in § 6.2 where ToA estimation using all Stokes parameters

is discussed.

5.5. Plasma propagation effects at radio wavelengths

Atomic and molecular gas have essentially no influence on pulse propagaton except in narrow emission lines that

increase the system noise and absorption lines that diminish the pulsar signal (G. de Jager et al. 1968; J. M. Dickey

et al. 1981; D. A. Frail et al. 1991). In extraordinary circumstances the pulsar signal can be enhanced by maser

amplification, as seen in the OH line (J. M. Weisberg et al. 2005).

Variations in gravitational potential also affect pulse propagation times and in very rare circumstances may produce

multiple images. Effects from binary companions produce the well known Shapiro delay that has famously been used

for precision determinations of NS masses (e.g. H. T. Cromartie et al. 2020). That subject is beyond the purview of

this paper. However, Shapiro delays can potentially be measured from intervening stars, planets, and dark matter

clumps (e.g. S. Desai & E. Kahya 2018). By and large, these instances are addressed by expressing the gravitational

potential as an equivalent index of refraction.
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Figure 13. Stokes profiles for two millisecond pulsars in NANOGrav’s timing program. Profiles are
from the analysis of NANOGrav’s 12.5 yr data set (H. M. Wahl et al. 2022) and were downloaded from
https://nanograv.org/science/data/polarization-calibration-data (Version 2.1). For each case the top panel shows Stokes I
(blue), L (orange), and V (green) and the bottom shows the polarization angle for values of L larger than 3σL. Left: J1125+7819,
an example of high linear polarization that is narrower than Stokes I. Right: J1713+0747, an example complex, narrower struc-
ture in L than in I but with less than 40% linear polarization

By far the most prominent effects are dispersion and scattering caused by plasmas encountered along the LoS, including

the Earth’s ionosphere and the solar wind, but the dominant effects are from partially ionized gas in multiscale ISM

structures and turbulence extending from ∼ 100 km to kpc scales.

All relevant effects on pulsar signals can be analyzed in terms of the index of refraction nr of a cold, tenuous, and

magnetized plasma with electron plasma frequency νp = ωpe
/2π = (nee

2/πme)
1/2 and cyclotron frequency νc =

ωc/2π = eB/2πmec, where e and me are the electron charge and mass, ne is the electron number density, and B is the

magnetic field. Table 3 gives typical values of these quantities and integrated measures for the ISM, which dominates

pulsar measurements, along with those for the IPM near the solar system and the ionosphere.

For νc ≪ νp ≪ ν along with quasi-longitudinal propagation at an angle θ from the magnetic field direction, and

neglecting very small contributions from ions (predominantly protons),

nr
2 =

(
kc

2πν

)2

≈ 1 −
(νp
ν

)2( 1

1 ∓ νc∥/ν

)
. (5.20)

where νc∥ ≡ νc cos θ and the upper and lower signs apply to right-hand and left-hand polarizations, respectively (IEEE

and IAU conventions).

Chromatic effects are time dependent owing to geometrical changes in the propagation path, predominantly caused

by translational motions of the pulsars, which have much higher velocities than main-sequence stars. In some cases,

Earth’s motion around the Sun and orbital motion of binary pulsars also contributes significantly to characteristic

time scales, especially for MSPs.

Physical effects that need to be accounted for in pulsar timing, either through mitigation or inclusion in the measure-

ment error budget, are as follows:

https://nanograv.org/science/data/polarization-calibration-data
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Table 3. Plasma parameters for the Ionosphere, interplanetary medium (IPM), and interstellar
medium (ISM)

Quantity Units Symbol Ionosphereb IPM@1 AUc ISMd

Electron density cm −3 ne 106 [max] 5 0.03
Magnetic field µG B 3×105 100 3
Plasma frequency kHz νp 9000 20 2
Electron cyclotron frequency Hz νc,e 106 300 10
δ(refractive index) @ 1 GHz — δnr = 1 − nr 10−5 10−10 10−12

Integrated measuresa

Dispersion measure pc cm−3 DM 10−6 - 10−5 ≳ 3 × 10−5 3 to 1700
Rotation measure rad m−2 |RM| 0.5 - 2 ≳ 4 × 10−4 few to > 103

Emission measure pc cm−6 EM ∼ 3 ≳ 10−4 < 1 to > 105

aIntegrated measures are given for lines of sight away from the Sun. Much larger DM and RM values
have been measured for LoS making close approaches (e.g. S. R. Spangler 2005; E. A. Jensen et al.
2018; J. E. Kooi et al. 2022).

b ne: D. Bilitza et al. (2022, IRI model), J. B. Malins et al. (2018); Magnetic field: E. Thébault et al.
(2015, IGRF-12 model); RM: N. K. Porayko et al. (2019)

c ne: J. A. Ratcliffe (1972); B: C. T. Russell (2001); J. E. Borovsky (2020); RM: J. E. Kooi et al. (2022)

dB. T. Draine (2011)

We make use of standard propagation measures expressed in their standard units (with distances in pc or kpc, ne in

cm−3, and B∥ in µG) and integrations from 0 to z,

Dispersion measure: DM =
∫
ds ne pc cm−3,

Faraday rotation measure: RM = e3

2πm2
ec

4

∫
ds neB∥ = 0.81

∫
ds neB∥ rad m−2,

Emission measure: EM =
∫
ds ne

2 pc cm−6

Scattering measure: SM =
∫
dsC2

n kpc m−20/3.

(5.21)

The first three measures are discussed immediately below while the scattering measure is deferred to § 9.2.

Phase perturbations: Propagation imposes an extra phase equal to the integral of k(nr − 1) along the propagation

path. Paraxial optics applies because deflections from vacuum geodesics are typically less than one arcsecond so the

integral can often be taken along an undeflected path. The phase at a transverse position x at position z along the

path is

ϕ(x, z)≃−
[
λreDM(x, z) ± λ2RM(x, z) +

(
λ3r2e
4π

)
EM(x, z)

]
.

≃−
[
2.61 × 107

(
DM

ν

)
± 0.0899

(
RM

ν2

)
+ 5.25 × 10−4

(
EM

ν3

)]
rad (5.22)

where re is the classical electron radius and the frequency ν is in GHz.

Dispersion: The group delay adding to the vacuum propagation delay d/c is td = (1/2π)dϕ/dν or, equivalently,

the integral involving the group velocity vg = ∂ω/∂k = c(nr + νdnr/dν)−1 over the pulsar-solar system distance19 d,

td =
∫ d
0
ds (v−1

g − c−1). Evaluating to first order in νc∥/ν and fourth order in νp/ν (A. Suresh & J. M. Cordes e.g.

19 Note that pulsar timing analyses are referenced to the solar system barycenter, which implies that the Doppler shift from the Earth’s
motion needs to be included.
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2019; see also J. A. Phillips & A. Wolszczan 1991; T. E. Hassall et al. 2012),

td = tDM ± tRM + tEM ≃ KDM

(
DM

ν2

)
±KRM

(
RM

ν3

)
+KEM

(
EM

ν4

)
(5.23)

where the coefficients are

KDM =
e2

2πmec
=
cre
2π

= 4.15 ms, KRM =
c2

π
= 28.6 ps, KEM =

3e4

8π2m2
ec

= 0.251 ps. (5.24)

DM fluctuations occur on a wide range of time scales associated with transport of the LoS across multiscale density

structures by various motions. Because DM delays are large, these fluctuations must be tracked vs. epoch, as discussed

in the next section.

Values of plasma quantities in Table 3 indicate that dispersive time delays are dominated by the ISM. Nonetheless,

contributions from the ionosphere and IPM make noticeable contributions to the most precise arrival times and their

variability on short time scales (hours, days) implies a contribution to the timing error budget if they are not mitigated

using multifrequency observations. As an example, a 10 ns delay at 1 GHz corresponds to δDM ∼ 2.4× 10−6 pc cm−3,

a value that is reached for all three media characterized in the table.

Birefringence and Faraday rotation: The birefringent RM terms imply that a narrow pulse splits into its dif-

ferentially arriving circularly-polarized components (A. Suresh & J. M. Cordes 2019). The DM term in Eq. 5.23 is

by far dominant and it is only in very dense, highly magnetized clouds that the RM and EM terms will matter in

low-frequency observations, as demonstrated in Fig. 14. The inset shows that the RM and EM terms reach µs levels

only at frequencies ≪ 1 GHz. They may be important for burst emitters in dense regions with large magnetic fields

(e.g. fast radio burst sources) but for precision timing of Galactic millisecond pulsars, the EM term is negligible and

the RM term is typically less than a few ns.

Birefringence is typically measured as rotation of the E vector vs. wavelength by the angle ψ = (ϕ+−ϕ−)/2 = λ2RM.

Ideally it would have no effect on arrival times but instrumental polarization and miscalibration of polarization channels

can render it important. Under those conditions, imperfect removal of Faraday rotation across the data band will yield

a systematic error that can be epoch dependent.

Refraction:. Large scale density variations on ≳ au scales alter the angle of arrival (AoA) and cause slow flux density

variations (refractive interstellar scintillations, RISS; B. J. Rickett et al. 1984). Fig. 15 (left panel) shows these effects
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Figure 14. Excess time of arrival vs. frequency for DM = 100 pc cm−3, RM = 10 rad m−2 and EM = 20 pc cm−6, values
chosen to illustrate the effects not to model any particular line of sight. Inset: Excess arrival time after dedispersion of only the
DM term.
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S

O

Figure 15. Left: Schematic thin refracting screen that changes the wavefront (red) and thus the angle of arrival seen by an
observer O and the intensity, represented by the variable density of rays in geometrical optics. Refraction in the local ISM is
sometimes dominated by a single screen-like structure while for distant objects it is a cumulative effect from multiple structures.
Right: Illustration of scattering from a thin screen with phase fluctuations produced by Kolmogorov fluctuations in refractive
index. The cones with apexes at a pulsar and at an observer’s position in the observation plane represent ray path bundles of
scattered radiation. The narrow and wide cones correspond to a high and a low frequency, respectively. The diffraction pattern
is shown as a function of X,Y in the observation plane and as a function of radio frequency ν.

schematically for a thin screen geometry. In this case the deflection angle produced by the screen is θr = k−1∇xϕ(x, z)

and intensity variations are related to the second derivative. Refractive scintillations alter the signal-to-noise ratio

and thus cause episodic changes in achievable RMS ToA errors from matched filtering. Variations in AoA introduce

further arrival time delays to the dispersive delays. If deflection angles are large enough, bright intensity caustics and

ray crossing can cause pulse echoes that perturb estimated ToAs. Collectively the empirical manifestations of these

effects are referred to as ‘extreme scattering events’ (ESEs) even though they are refractive in origin. Instances of

ESEs in pulsar timing appear to be rare (I. Cognard et al. 1993; M. Kerr et al. 2018).

Diffraction (scattering):. Diffraction arises if the wavelike property of incident radiation plays a role in changing the

direction of propagation, in contrast to geometrical optics. Fig. 16 shows the geometry for a thin screen at distances

dsl and dso − dsl from the source and an observer, respectively. A representative diffraction angle θd corresponds to an

initially emitted angle θi and an observed angle θo. Density variations on small scales (≪ au) cause forward scattering

S
O(xs, 0)

(xo, dso)

(xl, dsl)

i

d

o

dsl dlo

Figure 16. Thin screen geometry for diffraction and ray tracing and for the application of the Fresnel-Kirchhoff diffraction
integral. Small angles ≪ 1 rad are assumed for diffraction into an angle θd in the screen at distance dso from the source S.
Transverse coordinates xs,xl and xo define locations in the source, screen layer, and observation planes.



37

and multipath propagation that produce important effects for pulsar timing: diffractive intensity scintillations (DISS)

vs. time and frequency and pulse distortion from differential propagation times. These effects are illustrated in Fig. 15

(right hand panel).

The pulse broadening function (PBF) is typically defined using only geometrical path length differences and represents

the scattered pulse shape produced for an emitted delta-function. In the frequency domain, multipath is manifest as

constructive and destructive interference that strongly modulates the spectrum. A spectrum and PBF are illustrated

in Figure 17. The constructive and destructive interference underlying scintillations is distinct from caustics that occur

in geometrical optics, where deflections are related to phase gradients that occur even in the limit of infinitesimal

wavelengths.
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Figure 17. Top: Pulse broadening function for for a pervasive medium with a Kolmogorov electron density spectrum and
negligible inner scale. The single realization shown displays the noise-like process that is modulated by an envelope function.
The noise process remains constant over a DISS time scale while the envelope is sustained for much longer time spans. Bottom:
Spectrum corresponding to the field PBF normalized to the spectral mean (black line) and plotted against the radio frequency
ν minus a center frequency ν0. Spectral amplitudes are exponentially distributed so the ensemble average modulation of the
spectral intensity is unity. The single realization shown here slightly departs (statistically) from a modulation index of unity.

Reflection: A plasma structure can reflect radiation if the plasma frequency is comparable to the electromagnetic

frequency or if there is grazing incidence on an interface between two plasma densities. Reflections will alter the flux

density and polarization. While currently it is unclear whether reflections have influenced any pulsar observations to

date, they may be manifested in rare occasions in long timing programs.

5.6. Interstellar impulse response functions

The net impulse response of the ISM is a combination of (scalar) dispersion, Faraday rotation, and multipath propaga-

tion (where we ignore the very small EM term). The phase given in Eq. 5.22 for the two hands of circular polarization

indicate that the impulse response due to DM and RM is simply a phase change of Fourier components by a complex

factor h̃DM,RM(ν) = exp[iϕ(x, z)] for the observer’s location, which is factorable into separate DM and RM compo-

nents, h̃DM and h̃RM. Coherent dedispersion comprises multiplication of measured Fourier components by the complex

conjugate of this factor. In practice, this operation is applied to baseband data with bandwidth B and, to date, only

the DM contribution to the phase is considered in the vast majority of applications. Multipath, primarily from diffrac-

tion accompanied by refraction is not so simple to mitigate. Pulse broadening, as already described, involves a ‘field’

PBF denoted as hd(t). The total interstellar impulse response is the time-domain convolution of the three factors (and
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a receiver bandwidth factor that we keep implicit),

hism(t) = hDM(t) ∗ hRM(t) ∗ hd(t). (5.25)

Dedispersion of the hDM term and derotation of the hRM term are both exercises in matched filtering and can be done

exactly if the true DM and RM values are known.

Dedispersion: The dispersion delay in Eq. 5.23 varies significantly across frequency bands used in pulsar studies and

thus must be removed before summing pulse intensities over frequency to improve the signal to noise ratio and to

maximize the net time resolution and timing precision.

An approximate method is ‘post-detection’ or incoherent dedispersion used for intensities obtained with a multi-channel

receiver. Pulses from each are aligned by shifting each intensity by td(νref)− td(ν), where νref is a reference frequency.

This method cannot remove the differential delay across a frequency channel and thus distorts the pulse from its

emitted form. The minimum smearing time of the pulse results when the dispersion delay across a channel (dtd/dν)

equals the natural channel response time ∆ν−1
channel, so narrower channels can minimize but not remove this effect.

The more advanced (and exact) approach is coherent dedispersion that properly corrects the Fourier phase of the

sampled electric field contained in the baseband voltage (T. H. Hankins 1971; T. H. Hankins & B. J. Rickett 1975). The

gist of the method is easily seen by considering the measured electric field E(t, z) =
∫
dν Ẽ(ν, 0) exp{i(k(ν)z − 2πνt)}

in terms of the Fourier transform of the emitted field Ẽ(ν, 0) for a medium with constant refractive index nr given by

Eq. 5.20. The wavenumber is k(ν) = nr(ν)k0 where k0 is the vacuum wavenumber. The dedispersed signal is obtained

by multiplying the Fourier transform of the measured field Ẽ(ν, z) by exp{−ik(ν)}. Inspection of Eq. 5.22 shows that

the dominant phase term involves the DM term. In principle, large values of |RM| may require inclusion of the ν−3

term but to date there is no published instance that uses the RM term.

For most cases, DM is the sole parameter needed for coherent dedispersion and the required precision on DM to avoid

pulse distortion depends on radio frequency and on the widths of pulse features (T. H. Hankins & B. J. Rickett 1975;

J. M. Cordes & M. A. McLaughlin 2003). We discuss the details of DM determination in a later section.

Implementation of coherent dedispersion with baseband data is discussed in the original papers by T. H. Hankins

(1971) and T. H. Hankins & B. J. Rickett (1975), with applications to full Stokes parameters (J. M. Cordes & T. H.

Hankins 1977; I. H. Stairs 2002), and execution of graphical processing units for high data rate applications to pulsars

and FRBs (e.g. S. H. Reddy et al. 2017; L. Bondonneau et al. 2018; Y.-Z. Zhang et al. 2024).

In most of the paper, we assume that dedispersion is perfect across relevant observing bands, requiring that epoch-to-

epoch variations in DM are included; the primary element of the net impulse response is then the diffraction term.

5.7. Intensity statistics for scintillated amplitude modulated shot noise

Diffraction causes multipath propagation at radio frequencies where phase fluctuations exceed about 1 rad (RMS) over

a transverse separation smaller than a Fresnel scale (discussed in detail in §10.3). Multiple paths replicate individual

shots in the shot noise signal of Eq. 5.13. Representing the the impulse response for propagation as a weighted sum

of delta functions, g(t) ∼ ∑k gkδ(t − tk) the scintillated signal (with ‘s’ subscript) becomes (e.g. J. M. Cordes et al.

2004)

εs(t) =
∑
j

aj
∑
k

gk∆(t− tj − tsk). (5.26)

Intensity statistics in the frequency domain are useful for assessing timing errors. The voltage Fourier transform,

ε̃s(ν) = ∆̃(ν)
∑
j

aje
−2πiνtj

∑
k

gke
−2πiνtsk , (5.27)
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is the product of two independent, complex Gaussian noise processes when the number of terms in each sum is large20.

The squared magnitude of ε̃s(ν) is the spectrum having an overall extent determined by |∆̃(ν)|2,

Ss(ν) = |∆̃(ν)|2A(ν)G(ν), A(ν) =

∣∣∣∣∣∣
∑
j

aje
−2πiνtj

∣∣∣∣∣∣
2

, G(ν) =

∣∣∣∣∣∑
k

gke
−2πiνtsk

∣∣∣∣∣
2

. (5.28)

The random processes A(ν) and G(ν) are positive semi-definite with RMS values equal to their mean values in the

limit of a large number of terms in their respective sums, which have complex Gaussian statistics. The PDFs for

A and G are thus one-sided exponentials because they are χ2
2 random variables with two degrees of freedom. Each

quantity has a characteristic frequency scale determined by the time dependence of the amplitudes aj and gk. The

shot amplitudes have pulse-like envelopes with duration WA leading to a characteristic frequency scale W−1
A . The

multipath amplitudes gk follow an impulse response with width equal to the scattering time τ ; its reciprocal is the

characteristic scintillation bandwidth. The net modulation index (RMS/mean) mS of Ss(ν) is given by

1 +m2
S(ν) = [1 +m2

I(ν)][1 +m2
G(ν)]. (5.29)

For χ2
2 statistics, mI = mG = 1 and mS =

√
3.

5.8. Gravitational lensing

Pulses encounter weak changes in the interstellar gravitational potential which act as a variable, achromatic refractive

index that adds to small refractive index variations from magnetized plasmas in the ISM, IPM, and ionosphere. The

LoS integrated gravitational potential from individual stars with masses mi and locations xi yields a geodesic noise

component to ToA variations of the simplified form (S. Golat & C. R. Contaldi 2021),

δtgn(xo, tA) ≃ −2G

c3

∑
i

mi ln

[
|xi| − k̂ · xi

|xo − xi| − k̂ · (xo − xi)

]
(5.30)

based on a thorough treatment by S. M. Kopeikin & G. Schäfer (1999) and where k̂ is the unit vector along the (un-

perturbed) propagation direction; velocities are assumed small enough to not matter and retarded times for evaluation

of stellar positions are implicit. The RMS value is σgn ∼ 10 ns (S. Golat & C. R. Contaldi 2021), a non-negligible

value compared to some of the best ToA precisions. The characteristic time scale for variations in δtgn along any

LoS are very long, decades to centuries (S. Desai & E. O. Kahya 2016), and any close encounters of the LoS with an

individual star have low probability, of order the ‘optical depth’ ∼ 10−6 for gravitational lensing. Over the current

∼three decades of extant timing data, such variations are removed by fitting for the pulsar spin parameters. The

situation differs for pulsars in globular clusters where the gravitational potential can affect estimates for the spindown

rate ḟs.

Pulsar timing data can be used to place upper limits on dark matter clumps that contribute to δtgn. Gravitational

lensing from small objects, though extremely rare, could produce oscillations in intensity vs. time and frequency that

may be detectable.

6. TOA ESTIMATION USING TEMPLATE MATCHING

The quality of pulsars as astrophysical clocks is best introduced with a description of how well TOAs are estimated

by matched filtering (MF) of pulse profiles with a template function. The fundamental assumption of MF is that

the measured pulse is an exact copy of a template scaled in amplitude and shifted in time with noise added. These

conditions are largely satisfied but the highest timing precision requires attention to the frequency dependence of

pulse shapes and departures in shape that arise from emission jitter, from propagation through the ISM, and from

instrumental distortions.

20 The AMN sum has many terms if the shot noise is dense. The propagation term has many terms under the conditions of ‘strong
scintillation,’ as defined later.
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Arrival times are most often computed for the pulse profile in Stokes I, which we discuss first. We discuss the potential

benefits of full-Stokes template fitting later. Here, we consider the simplest 1D case of arrival time estimation from a

narrow-band profile in order to illustrate some basic points and in later sections consider 2D estimation that addresses

profile chromaticity. The minimum ToA error is achieved when profile and template are exact matches to within

additive noise. All other effects increase the error.

Let Ut be the template profile sampled at Nϕ discrete times, t ∈ [0, Nϕ − 1] corresponding to one cycle of pulse phase.

The data profile Dt = Pt +Nt thus comprises a scaled and shifted version of the template Pt = bUt−t0 added to noise

N having variance σ2
N . Here and below, Pt is normalized to have unity maximum. Data are fitted with a numerical

model, Dt = a + b Ut−t0 , by minimizing the χ2 cost function to estimate the ToA t0 along with the baseline a and

scale factor b, while the rms noise σN is estimated separately. Least squares fitting is equivalent to finding the ToA

from the time lag where the cross correlation function of the template and profile maximizes. With sampled data, the

optimization is far easier in the frequency domain to avoid interpolation issues that arise in the time domain21 (J. H.

Taylor 1992). Using tildes to denote discrete Fourier transforms (DFTs) of the data and template, D̃f and Ũf , with

discrete frequency indices f ∈ [0, Nϕ − 1], the TOA estimate is the solution of

Nϕ/2∑
f=1

Im{fD̃f Ũ
∗
f e

2πift0/∆tNϕ} = 0. (6.1)

The sum excludes the f = 0 elements, which determine the estimate of the baseline a but are not needed for the

TOA; the sum extends only to Nϕ/2 by Hermiticity of the DFTs. If the template and parameters yield a good fit, the

minimum TOA error is

σtS/N
=

P

2π(S/N)

(
Nϕ
2

)1/2
Nϕ/2∑
f=1

f2|Ũf |2
−1/2

. (6.2)

The f2 factor in the sum causes higher frequency components in the template to be emphasized. Narrower pulses

or those with sharper features yield a larger sum, thus reducing the TOA error. The signal to noise ratio is defined

as (pulse peak) / (rms noise), or S/N ≡ b/σN. Eq. 6.2 applies for S/N ≫ 1 because it is based on the quadratic

expansion of a cost function that assumes small errors.

The TOA error is also written in a form that separates pulsar properties from telescope and analysis parameters,

σtS/N =
Weff

N
1/2
ϕ (S/N)

, (6.3)

where the effective pulse width involves both the spin period and the pulse shape and is expressed in either the

frequency or time domain,

Weff =

(
NϕP

2π
√

2

)Nϕ/2∑
f=1

f2|Ũf |2
−1/2

= P

[
Nϕ
∑
t

(Ut+1 − Ut)
2

]−1/2

∆t→ 0−−−−−−→ P 1/2{∫ P

0

dt [U ′(t)]
2

}1/2
. (6.4)

By inspection of Eq. 6.4, narrow pulses or those with sharp features have larger denominators than wide pulses. This

is also evident in the continuum limit that involves the derivative of the template, U ′ ≡ dU/dt: larger derivatives

correspond to smaller TOA errors. The continuum limit shows that the effective width involves both the spin period

P and the actual pulse shape. However, it does not depend on the number of samples across the pulse, Nϕ.

Figure 18 shows Weff vs. period for pulsars in the 15-yr NANOGrav PTA along with the ACF width of each profile

and the widths of single profile components calculated from the ACF of the profile’s first derivative (c.f. Figure 12).

All three widths show an upward trend with period but with the smallest scatter for Weff and the largest for individual

components.

21 Interpolation in the time domain requires use of the appropriate interpolation function, which is sinc(Bt) = (sinπBt)/πBt (B =
bandwidth) with slowly decaying oscillations.
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Figure 18. Pulse widths vs. period. The effective width Weff , ACF width Wacf , and single component width W1,acf were
calculated from template profiles for pulsars in NANOGrav’s 15-yr PTA.

6.1. Evaluation using pulsar and telescope parameters

The rms noise in a pulse profile with Nϕ bins is σN = Ssys/
√
npolBTint/Nϕ, where Ssys = Tsys/G is the system

temperature, Tsys, expressed in Jy units using the telescope gain G = Ae/2kB in K Jy−1 (with Ae = effective telescope

area and kB = Boltzmann constant). Dominant contributions to Tsys include receiver noise, ground ‘spillover’ noise,

and the sky background that includes free-free and synchrotron emission from the Galaxy, and the cosmic microwave

background. Other parameters include the number of polarization channels used with npol = 2 for Stokes I profiles;

B is the bandwidth; and Tint is the total integration time (typically ∼ minutes to an hour). The integration time per

profile sample is Tint/Nϕ.

This gives a signal-to-noise

S/N =
Spk

σN
=

P⟨Sν⟩ϕ
W

=
⟨Sν⟩ϕ
Ssys

P

W

(
npolBTint

Nϕ

)1/2

≃ 3437 × ⟨Sν⟩ϕ(mJy)

Ssys(Jy)

Pms

W100

[
(npol/2)BGHzTint,3

Nϕ/2048

]1/2
(6.5)

where the peak flux density is expressed in terms of the catalogued flux density averaged over pulse phase, Spk ≃
P ⟨Sν⟩ϕ/W , and the pulse duty cycle, W/P . 22

The pulsar’s flux density typically scales as a power-law ⟨Sν⟩ϕ ∝ ν−αS with spectral indices 0 ≲ αS ≲ 3. In some cases

the spectrum turns over at low frequencies ≲ 0.3 GHz and in others the spectrum steepens at high frequencies. At

frequencies ≲ 1 GHz, the scaling of the synchrotron background, Tsync ∝ ν−2.7, is nearly cancelled by that of the flux

density for pulsars with larger spectral indices, yielding S/N that is less dependent on frequency than the individual

factors. The ToA error is

σtS/N =
WeffWSsys

P ⟨Sν⟩ϕ
√
npolBTint

(6.6)

22 For individual pulses or fast radio bursts we would use the peak flux density directly to calculate S/N and the ToA error.
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Example of a single-component Gaussian pulse of width W (FWHM): The effective width is

Weff =

(
WP√
2π ln 2

)1/2

≃ 219 µs
√
W100µsPms, (6.7)

for a nominal 1 ms period and 100 µs width. The corresponding TOA error is

σtS/N
=

1

(2π ln 2)1/4
Ssys

⟨Sν⟩ϕ
W 3/2

(npolBTintP )1/2
≃ 15 ns × Ssys(Jy)

Spsr(mJy)

W
3/2
100√

(npol/2)BGHzTint,3Pms

(6.8)

where we have used an integration time Tint = Tint,3 × 103 s, a bandwidth in GHz, Ssys (SEFD) in Jy, and the pulsar

period averaged flux density Spsr in mJy. Pulsars show a variety of periods, widths, and strengths, yielding TOA

errors ranging from sub-µs to several ms or more for long period pulsars and magnetars.

For later use, we express the signal to noise ratio S/N =
√

N((S/N)1) in terms of the single pulse value, (S/N)1,

assuming that amplitudes are statistically independent between N = Tint/P pulses 23 , yielding

σtS/N
≃ 4.8 nsPms

(S/N)1

(
W100

Tint,3Nϕ/2048

)1/2

. (6.9)

Multiple component profiles: While some pulsars display single-component pulse profiles, many show two or more

components with different amplitudes and different degrees of component overlap in pulse phase. To account for these

in a simple way, we let all nc components have the same width Wc. Assuming no phase overlap, the effective width

is a factor n
−1/2
c smaller (cf. Eq. 6.4) and the peak flux for a component Spkc = ⟨Sν⟩ϕP/ncWc is smaller by a factor

n−1
c . The net effect is that the TOA error is larger by a factor n

1/2
c .

For profiles comprising nc components with the same characteristic width Wc but different amplitudes aj , the weighted

number is nc2 =
∑
j(aj/amax)2 ≤ nc, yielding Weff = (WcP/nc2

√
2π ln 2)1/2. The period-averaged flux density in

Eq. 6.6 becomes Sϕ → Sϕ/nc1 and the net ToA error is

σtS/N
=

KU√
npolBTint

Ssys

Sϕ

(
nc1√
nc2

)(
W 3

c

P

)1/2

, (6.10)

where KU ∼ 1 is a pulse-shape dependent factor. For Gaussian shaped components, KU = [π/32(ln 2)3]1/4 = 0.74.

Equations 6.4–6.10 provide the means for identifying key factors and improvements that can be made to minimize the

TOA error:

1. The error decreases inversely as S/N, as usual for matched filtering, and thus also for bright pulsars;

2. Interstellar scintillation modulations of the emitted flux density can be large (up to ∼ 100% variations for DISS

and ∼ 10 to 30% for RISS), making the S/N and thus the RMS TOA error epoch dependent and stochastic;

3. Pulsars with smaller effective widths Weff yield smaller errors, illustrating how smaller periods P and narrower

pulses (or narrow pulse structure) are beneficial;

4. Effective widths increased by instrumental or astrophysical broadening degrade timing precision;

5. Larger telescopes and lower Tsys yield better precision in proportion to smaller Ssys = Tsys/G = 2kTsys/Ae; and

6. Larger bandwidths and longer integration times reduce σtS/N
24.

These features underly our later discussion in Section 20 of quality measures for precision timing of MSPs.

23 Some pulsars show amplitude correlations between neighboring pulses but, for steady pulsars that show no changes in profile state,
statistical independence is a reasonable assumption. State changes are discussed later.

24 However, as discussed later, large bandwidths introduce significant complications from scattering that can counteract the improvement
of the MF error.
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6.2. Full Stokes template fitting

Template fitting using the full Stokes vector S (Eq. 5.4) has been assessed in recent work (e.g. L. Dey et al. 2024; A. F.

Rogers et al. 2024) that builds upon the formalism developed in W. van Straten (2002, 2006, 2013). We outline here

the conditions under which improvements over scalar Stokes I template fitting can be expected. We refer to profiles in

Q,U,L = Q+ iU and V as polarization profiles distinct from the total intensity profile I. Our treatment here ignores

instrumental polarization, a discussion of which is deferred to § 8.1.

Polarization profiles typically show sharper pulse features than in Stokes I, as they must given that pulsars generally

show systematic changes in polarization state across pulse phase. The potential for these sharper features to yield

more precise ToAs must be weighed against their lower S/N if the degree of polarization, dp ≡
√
d2L + d2V , is not large.

To assess this we take into account the properties of polarized signals and unpolarized noise (§ 5.2) and refer to Eqs. 6.3

- 6.10. The ToA error from matched filtering is σtS/N ∝ Weff/S/N. Using a single component profile as an example,

the effective width Weff ∝
√
WP , where W is the actual component width and P is the spin period. For an individual

pulsar, we can ignore the period dependence for now. Defining the component width as Ws and the peak amplitude

|s|pk for each Stokes parameter (s = I, Q, U, V) and taking into account that Q,U and V are signed quantities, the MF

error for each Stokes parameter is σts = σt,I
√
Ws/spk. Note that the implied signal to noise ratios underlying the ToA

error are based on additive noise having the same RMS value in the Stokes parameters (§ 5.2). Further, recognizing

that peaks do not align in pulse phase, we define Ipk,s as the Stokes-I value at the phase where the Stokes-s extremum

occurs. This allows us to express ToA errors in terms of the polarization state using peak values of dL and dV and in

terms of the error in Stokes-I,

σt,I ∝
W

1/2
I

Ipk
, (6.11)

σt,Q≃ σt,I
|dL cos 2χ|pk

(
WQ

WI

)1/2
Ipk
Ipk,Q

(6.12)

σt,U ≃ σt,I
|dL sin 2χ|pk

(
WU

WI

)1/2
Ipk
Ipk,U

(6.13)

σt,V ≃ σt,I
|dV |pk

(
WV

WI

)1/2
Ipk
Ipk,V

(6.14)

Another expression results by using L = Q+ iU ,

σt,L≃
√

2σt,I
dLpk

(
WL

WI

)1/2
Ipk
Ipk,L

, (6.15)

where the
√

2 factor represents the larger RMS noise in L compared to the individual Stokes parameters. Improved

ToAs result if sharper Stokes parameters outweigh the potentially lower S/N . This holds if the degrees of polarization

are large enough, e.g.

dLpk >
√

2

(
WL

WI

)1/2
Ipk
Ipk,L

and dV pk >

(
WV

WI

)1/2
Ipk
Ipk,V

, (6.16)

along with similar expressions for Q and U individually. The intensity ratios Ipk/Ipk,L and Ipk/Ipk,V are ≥ 1 while

the width ratios ≤ 1, demonstrating the tradeoff between these quantities.

Joint fitting of all four Stokes parameters is optimal because additive noise is statistically independent between Stokes

parameters. We illustrate with a highly simplified approach that estimates ToAs by minimizing a cost function,

C(a, t̂0) =
∑
t

I,Q,U,V∑
s

[
aUs(t− t̂) − s(t)

]2
Var(soff)

, (6.17)

which sums over Stokes parameters s and time t across pulse phase and where Us is a known template shape for

Stokes-s, a is a scale factor, and t̂ is the estimated ToA. Each term is weighted by the off-pulse variance Var(soff).
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This example assumes that the Stokes profiles Us are known and the polarization state is epoch independent (after

Faraday rotation correction) so that only a single scale factor is needed.

Using Eq. 6.11 - 6.17 we estimate the improvement factor for using full Stokes ToA estimates compared to Stokes-I

only. Improvements in ToA errors range from 5% to about 70% for the MSPs reported in L. Dey et al. (2024).

While full-Stokes fitting is more complicated than illustrated here (e.g. W. van Straten 2013, and see also § 8.1), the

key points are evident, namely that the form of the cost function is based on the statistical independence of off-pulse

noise and that the net results depend on polarization states and pulse widths that are unique to each pulsar. PTA

measurements with more sensitive telescopes can enable implementation of this benefit, with each pulsar assessed

individually to fully optimize this aspect of ToA estimation.

6.3. Chromatic changes in profile shape

A notable departure from idealized template matching is the nearly ubiquitous chromaticity of pulse shapes associated

with the emission process. Most pulsars show significant variations of average pulse shape vs. frequency, usually as

changes in relative amplitudes and spacings of profile features that can be identified across wide frequency ranges. All

of the MSP profiles shown in Fig. 1 for ∼ 1.5 GHz evolve with frequency. An example of profile variations over a 10:1

frequency range is shown in Fig. 19 for the MSP J0437-4715. Others can be found for CPs (e.g. T. H. Hankins & B. J.

Rickett 1986; T. H. Hankins & J. M. Rankin 2009; T. E. Hassall et al. 2012) and MSPs (e.g. V. I. Kondratiev et al. 2016)

that show similar but also a diversity of properties. The general trend is for profiles to broaden at lower frequencies

with counterexamples for some CPs by the growing prominence of narrow ‘core’ components relative to broader ‘conal’

components (e.g. J. M. Rankin 1983), making the net pulse shape effectively narrower at lower frequencies for these

cases. Much of the frequency dependence is captured in multicomponent profile models like those described in § 5.4

with frequency dependent amplitudes, widths, and phases.

6.4. Shape shifters: pulsars with epoch-dependent profile shapes

The above considerations are based on the assumption that pulse variability is ergodic, i.e. that pulses are drawn

from a homogeneous ‘population’ of pulses so that average profiles are convergent to a time-invariant (though chro-

matic) ensemble average. However, even after averaging out single-pulse stochasticity, there are several classes of

non-convergent profiles manifested in pulsars. All of these have significant effects on ToA estimation.

As mentioned briefly in § 5, the shape of an average profile is ultimately linked to the magnetic field topology where
radio emission is produced in the magnetosphere of the NS. This field is a combination of the frozen-in field of the

NS and the field produced by magnetospheric currents. The orientation of the NS’s spin vector and its rate then map

the emission beam into the observed shape. The net pulse shape also depends on any variation in emission altitude,

which increases the scatter in single-pulse arrival times due to aberration and retardation. The emission strength also

depends on the relativistic particle flows along the field lines and the degree of coherence. Empirically, the stability of

profiles implies that all of these ingredients are also stable, on average, in most cases.

Secular and stochastic profile variations: The Crab pulsar has been observed for almost 60 yr since its discovery in

1968, representing about 6% of the time since its apparent birth in 1054. A secular change in the separation of the

primary main-pulse and interpulse components suggests that the magnetic field is evolving on the spindown time scale

(A. Lyne et al. 2013). For the Crab pulsar, this evolution is likely due to migration of the magnetic axis relative to

the spin axis. It is slow enough that it does not limit timing precision; however, substantial glitch activity and spin

noise make the Crab pulsar, like most young pulsars, an imprecise pulsar clock.

More striking examples can be found among magnetars, which show large profile changes on time scales of months

that are accompanied by changes in the spindown torque e.g. Swift J1818.0−1607 (R. Fisher et al. 2024) and PSR

J1745-2900 (A. B. Pearlman et al. 2018; W. M. Yan et al. 2018; R. S. Wharton et al. 2019; A. Suresh et al. 2021). For

these objects, stochastic magnetic evolution drives shape changes as well as spin variability and X-ray emission.
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Figure 19. Left: Average profiles for the MSP J0437-4715 showing the change in shape over more than a decade in radio
frequency. The profiles have been aligned using the strong central component that appears in all the profiles. Profiles are from
the EPN database (R. N. Manchester & S. Johnston 1995; J. F. Bell et al. 1997; S. Dai et al. 2015). Right: Profiles for the
heavily scattered pulsar J1644-4559 at multiple frequencies obtained simultaneously using the Parkes Ultra Wideband Feed (C.
Sobey et al. 2021, https://doi.org/10.25919/gptm-d012) along with a profile at 0.65 GHz from B. Rickett et al. (2009). Profiles
are aligned by their maxima. Proper alignment requires fitting for a contemporaneous value of DM estimated by taking into
account actual pulse broadening shapes at each frequency.

Discrete, recurrent states: Some objects, primarily CPs, show two or more discrete profile shapes that sustain for

multiple spin periods with switching between multistable states occuring rapidly, ≲ 1 spin period (‘mode’ changes

D. C. Backer 1970; A. G. Lyne 1971; N. Bartel et al. 1982; J. M. Rankin 1986). Switching appears to be consistent

with a Markov process, which gives exponential distributions for the durations of states (J. M. Cordes 2013). Arrival

time offsets are substantial between the different modes but can be accounted for in a timing analysis if individual

templates are used for each mode.

Another type of recurrence is ‘nulling,’ where the states are defined by highly disparate pulse intensities, where they

either vanish during a null or become much smaller for durations of a few to a large number of pulse periods (J. D.

Biggs 1992; C. Ng et al. 2020). Some pulsars display systematic drifts of pulse centroids over a few to a few dozen

pulse periods and some objects show multiple, repeatiable drift rates that are harmonically related, indicating another

class of discrete states.

The underlying physics of metastable states and switching between them is not well understood but appears to

involve recurrent states in the particle flows generated by acceleration in pulsar magnetospheres. One object, the CP

B1931+24, has residence times of weeks in high and low states, where detection of radio emission during low states

has only recently been detected (A. Rusul et al. 2025). State durations are long enough to establish that the spindown

torque is larger in the high state by ∼ 50% (M. Kramer et al. 2006a). Torque jumps of this amplitude require changes

in current on the scale of the entire magnetosphere, signifying that radio emission by itself, though a small part of

https://doi.org/10.25919/gptm-d012
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Figure 20. Average profiles for the MSP J1713+0747 before and after a sudden change in shape at MJD ∼ 53920 (top panel).
The profiles were aligned by using the ‘before’ profile as a template for the ‘after’ profile in order that the differences between
the two profiles (bottom panel) reflect the actual change in shape and not include the effects of a time offset.

the energy budget of a NS, traces large-scale magnetospheric activity. Much shorter nulls (tens to hundreds of spin

periods) in other pulsars may also involve changes in torque, but their durations are too small to allow changes in ḟs
to be measured.

Profile mode changes and nulling appear less common in MSPs and have not yet had a significant impact on timing

precision for those MSPs used in PTAs.

Discrete events: The MSP J1713+0747 has shown a transitory, highly chromatic change in pulse shape (H. Xu et al.

2021; J. Singha et al. 2021) that recovered to its original form after about two years (R. J. Jennings et al. 2024b, and

references therein). Fig. 20 shows profiles averaged over a data span of about 103 days prior to the event and 250 days

after. The ≳ 14% change is in contrast to ≪ 1% changes between high S/N profiles prior to the event. Confinement

of the event to a specific range of epochs is fortunate because this pulsar otherwise shows some of the smallest timing

residuals in PTA analysis. This pulsar has shown two similar previous events (M. T. Lam et al. 2018b; M. T. Lam

2021) with smaller arrival time shifts than the event in 2020-2021. Along with sparse time sampling the weakness of

these events has not allowed a detailed study of the pulse shape changes during these two events. It is possible, but as

yet unknown, if similar transitory events occur regularly for J1713+0747 or also occur at low levels for other MSPs.

Without correction, they would contribute distinctly non-Gaussian fluctuations into timing residuals.

There is ongoing debate as to whether the J1713+0747 events are intrinsic to the pulsar or a propagation effect (e.g.

F. X. Lin et al. 2021) but most indications suggest an intrinsic origin. Fortunately, reversion to the original shape

suggests that its effects are confined to a small range of epochs that can be avoided in PTA analyses.

7. TOA VARIATIONS FROM SINGLE-PULSE STOCHASTICITY

The signal model of § 5 implies that ToA errors will exceed those expected from idealized template fitting discussed

in § 6. Any departure of an average profile’s shape from the template causes an offset in the ToA. Here we discuss

profile shape changes caused by statistical variations in the N individual pulses used to calculate an average profile.
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Departures of profiles from the template shape diminish as N−1/2 and thus do not fully vanish. Even for N ≳ 105

typical for the timing of MSPs, the ≲ 0.3% shape variations can cause significant timing offsets.

Jitter refers to the variation in amplitude and phase of single pulses caused by both the amplitude modulation and

the noise in the AMN model. We discuss these two contributions to timing errors separately in what follows.

7.1. Pulsar self noise

The AMPSN model discussed in § 5.3 for the emitted pulsar signal represents ‘self’ noise Z(t) that produces an arrival

time error (using A(t) as a template). For a single pulse, this error scales as the pulse width WA divided by the square

root of the number of independent samples, n ∼ WABr where Br is the receiver bandwidth. For a single pulse with

100µs width and receiver bandwidth in GHz, σtZ = mZ

√
WA/Br ≃ 316 ns ×mZ

√
WA,100/BGHz where the self-noise

modulation index mz ≃ 1 for dense shot noise that is applicable to most pulsar observations but exceeds unity for

sparse noise.

For a sum of N = Tint/P = 106Tint,3/P
−1
ms pulses, the error is

σtZ ≃ 0.32 ns ×mZ

(
WA,100Pms

BGHzTint,3

)1/2

. (7.1)

Radio pulsar timing almost always involves the total intensity (i.e. Stokes I) equal to the sum of intensities of two

polarization channels. If unpolarized, Zp(t) (with p = 1, 2) is uncorrelated between the two polarizations and the self

noise error is reduced by 2−1/2. For 100% polarization, however, there is no reduction because Z1 ≡ Z2.

This contribution to the ToA error nominally contributes very little to the timing budget. However, it is larger than

the error expected under the very idealized conditions of template fitting (§ 3.1 , serving as a proof of principle that

self-noise alone causes excess ToA errors. Also, by inspection of Eq. 7.1, narrower bandwidths, shorter integration

times, wider pulses, and longer periods can yield much larger self-noise timing errors.

7.2. Timing jitter from stochastic pulse envelope modulations

Fluctuations in pulsar emission cause pulse envelopes to vary in both amplitude and pulse phase as demonstrated in

Fig. 11. These produce ToA errors that far exceed those caused by self-noise and can be larger than template fitting

errors and those caused by interstellar scintillation discussed in the next section.

We model jitter effects by assuming the single-pulse shapes are the same but their amplitudes and phases vary. Actual

pulses change shape dramatically, partly due to self noise but also from bona fide envelope shape variability. However,

envelopes have characteristic widths for a given pulsar and for the purposes of our analysis the extra parameters needed

to describe shape variability can be absorbed into a minimal set of parameters.

7.2.1. Single component pulses

We first consider cases there there is only one pulse component in the sense of Eq. 5.17. The template is equated to an

ensemble average (Np → ∞ assuming no time evolution of the pulse statistics), U(t) = ⟨IN (t)⟩. This allows expression

of the template as an integral over a joint distribution for aj and τj ,

U(t) =

∫∫
da dτ fa,τ (a, τ)aA(t− τ) −→ ⟨a⟩

∫
dτ fτ (τ)A(t− τ), (7.2)

where the second expression applies when the joint PDF fa,τ for a and τ is separable. The width WJ of the jitter

distribution fτ contributes to the net width of the template WU =
√
W 2

A +W 2
J where we assume the width WA is the

same for all single pulses and that both fτ and A(t) have Gaussian shapes.
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The RMS arrival time from template fitting is (unpublished notes)

σtJ =
σJ(1 +m2)1/2

N
1/2
p

≡ FJWU

N
1/2
p

, (7.3)

where σJ is the rms time jitter (the rms of τj) and the modulation index is m = σa/⟨a⟩. The second equality defines

the rms TOA in terms of a ‘jitter parameter’ defined as

FJ ≡ (1 +m2)1/2

2
√

2 ln 2

WJ

WU
. (7.4)

For this case (only), amplitude variations alone (σJ = 0) do not cause arrival time variations but they enhance the

TOA error by the factor (1+m2)1/2 when σJ > 0. A typical value for the jitter parameter is FJ ≃ 0.3, although there is

substantial variation between pulsars. M. T. Lam et al. (2016b) report a median value for an alternative jitter fraction

defined relative to the spin period, kJ = σJ/P ≃ 0.010+0.023
−0.006 that corresponds to FJ = kJP (1 +m2)1/2/WU ≃ 0.3+0.6

−0.1

for assumed values m = 1 and a typical pulse duty cycle WU/P ∼ 0.05.

Using N = Tint/P and nominal values for other parameters, the jitter TOA variation is

σtJ ≃ 33 ns ×W100

(
FJ

1/3

)(
Pms

Tint,3

)1/2

. (7.5)

Figure 21 shows the combined RMS ToA from template fitting and pulse jitter vs. signal to noise ratio. For FJ = 0,

the RMS error scales as (S/N)−1, as expected for matched filtering. The curves bottom out, however, for non-zero

jitter.
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Figure 21. Left: RMS arrival time vs signal to noise ratio S/N for simulated data comprising pulses with duty cycles
W/P = 0.05, phase jitter parametrized by FJ (as labeled), and additive noise. TOAs were calculated from averages of 103 pulses
in Nϕ = 2048 phase bins to yield a profile S/N 100 times larger than the single-pulse S/N. Plots are based on 103 realizations
for each pair of values for FJ and S/N. Right: RMS TOA vs. component separation for two identical Gaussian components
with single pulses in each having amplitude variations but no phase jitter. The amplitude variations are uncorrelated between
components. The points show the RMS TOA vs. component separation, where both axes are normalized by the component
width W (FWHM) to make them dimensionless. The plotted line is the analytical expression in Eq. 7.6.

7.2.2. Multiple component pulses

Timing variance changes significantly for pulsars with two or more profile components, especially if they overlap, as

is the case for many pulsars, including those shown in Fig. 1. In addition to the number of components and their

separations, TOA fluctuations depend on the widths and relative amplitudes of components:
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1. Multiple components with no overlap: Components with separations larger than their widths yield rms TOAs

smaller by a factor ∝ n
−1/2
c compared to a single component, with a proportionality constant determined by

the amplitude ratios of the components. For the signal-to-noise dependent TOA error, Weff is smaller with

nc > 1 components because there are more terms in the sum with large template derivative values. For the jitter

contribution, if FJWU is taken to represent the value for a single component, independence of jitter between

components also implies a reduction by n
−1/2
c . As with the single component case, there is no TOA variance if

there is no phase jitter in any of the components (FJ = 0).

2. Overlapping components: With overlap, amplitude variations in the absence of phase jitter can induce TOA

variance. This is a consequence of amplitude variations in different components affecting the entire profile shape

even if some components were to not have amplitude variations (which is not typically the case for radio pulsars).

The two-component case demonstrates these trends. When two Gaussian components have identical 1/e widths

W , identical mean and RMS amplitudes of single pulses (quantified by a modulation index mc), the the RMS

ToA variation as a function of mean component separation ∆12 is

⟨τ̂2⟩1/2 =

(
mc

W
√
N

)
1√
2

(∆12/W ) e−(∆12/2W )2

[1 + (1 − (∆12/W )2]e−∆12/2W )2]
. (7.6)

Figure 21 (right panel) shows the RMS TOA error vs. component offset for the equal amplitude case when there are

only amplitude variations of single pulses. Plotted points are based on 1000 realizations of simulated profiles and the

solid line is an analytical calculation of the TOA error for the assumed Gaussian pulse components with independent

single-pulse amplitudes. For non-overlapping components, the amplitude fluctuations do not affect the location of the

components nor is there any component crosstalk. For vanishing separation, the two superposed components act as a

single component and again the amplitude variations produce no TOA variations. R. J. Jennings et al. (2024a) give

further discussion about ToA errors for multicomponent profiles.

7.3. Jitter vs. noise dominated TOA errors

A criterion is needed for assessing whether, on average, a pulsar has S/N or jitter dominated timing errors. Improved

S/N can be achieved using a larger telescope with more bandwidth but if ToAs are jitter dominated, the primary

means for improvement is with longer integration times. Jitter is correlated over broad frequency ranges (∼ 1 GHz,

e.g. R. M. Shannon et al. 2014) so jitter is not reduced by frequency averaging over bandwidths smaller than this

correlation bandwidth. Conceivably, high frequency timing with the ngVLA may incorporate very wide bandwidths

that would reduce some of the jitter error in a few cases. However, this improvement will most likely be negated by

other timing errors.

Fig. 21 (left panel) shows the combined ToA error σt = (σt
2
S/N

+σt
2
J
)1/2 plotted vs. S/N for simulated Gaussian pulses

for several values of the jitter parameter FJ along with additive noise. For small S/N the variation is noise dominated

and decreases as S/N−1, as expected from Eq. 6.3, while the variations are jitter dominated at large S/N.

The transition occurs for a single-pulse signal to noise ratio S/N1 = N−1/2S/N obtained by equating Eq. 6.3 with

Eq. 7.3 and using Eq. 6.7 for the effective width of a Gaussian pulse shape to obtain

S/N1,trans =
1

(2π ln 2)1/4FJ

(
P

NϕW

)1/2

≃ 0.145 × Pms

(NϕW100/2048)1/2

(
1/3

FJ

)
. (7.7)

For many pulsars Pms/W100 ∼ 10, so a useful rule of thumb is that when single pulses have S/N1 ≳ 1, the ToA errors

are jitter dominated, regardless of the total integration time.

We now assess how many pulsars are expected to have jitter-dominated ToA errors. Fig. 22 shows the fraction of pulsars

with jitter-dominated TOA variations as a function of radio frequency, calculated by counting the number of pulsars in

the ATNF PSRCAT catalog25 (R. N. Manchester et al. 2005) for which σtJ > σtS/N (or equivalently, S/N1 > 1). The

25 http://www.atnf.csiro.au/research/pulsar/psrcat

http://www.atnf.csiro.au/research/pulsar/psrcat
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Figure 22. Fraction of pulsars that are jitter-dominated as a function of radio frequency, for MSPs (left; 148 LOS), PTA MSPs
(middle; 52 LOS), and other pulsars (right; 2099 LOS) in the ATNF catalog. Fractions are calculated for five values of the
system equivalent flux density Ssys at 1.4 GHz. The curves shown are cubic polynomials fit to the jitter-dominated fraction
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cataloged widths are used. For Ssys = 1.5, the synchrotron radio background contributes enough to cause a non-monotonic
dependence on radio frequency.
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Figure 23. Fraction of NANOGrav pulsars that are jitter-dominated at 1.4 GHz for the GBT and DSA-2000, based on their
respective sensitivities and bandwidths. The GBT fraction assumed a bandwidth of 0.5 GHz; increasing the bandwidth to that
of the ultrawideband receiver under commissioning would increase the jitter-dominated fraction to about 50%.

TOA error due to radiometer noise was calculated assuming a sky background dominated by synchrotron radiation,

Tsky ∝ ν−2.7, and a pulsar spectrum ∝ ναp . The pulsar spectral index αp was inferred from flux densities cataloged

at 400 and 1400 MHz where possible, otherwise αp = −2 was adopted. Fig. 22 demonstrates how the fraction of

jitter-dominated pulsars increases with telescope sensitivity. Arrival times of pulsars with S/N1 ≳ 1 are not improved

by any increases in telescope sensitivity insofar as radiometer noise and jitter are concerned. Larger bandwidths reduce

the arrival time variance due to radiometer noise by a factor B−1/2. Larger bandwidths can also reduce arrival time

variance due to interstellar scintillation, which can dominate over radiometer noise and jitter for pulsars with high

DMs or observations at low frequencies.

The fractions shown in Fig. 22 correspond to three subsets of pulsars in PSRCAT: all MSPs, MSPs currently timed by

PTAs, and all non-MSPs. A significantly larger fraction of PTA pulsars are jitter-dominated because they are chosen

to be bright: the mean flux density at 1400 MHz ⟨S1400⟩ = 4 Jy for PTA pulsars in PSRCAT, whereas ⟨S1400⟩ = 1.6

Jy for the total MSP population in PSRCAT. TOA variations due to radiometer noise are linearly dependent on flux
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density, resulting in a factor of ∼ 2 difference between the jitter-dominated fractions calculated for all MSPs vs. PTA

pulsars. The fraction of jitter-dominated pulsars timed by NANOGrav is shown in Fig. 23 for the GBT and DSA-2000,

demonstrating the dramatic increase in jitter-dominated pulsars that may be expected for the NANOGrav program

on DSA-2000. Regardless of increases in telescope bandwidth and sensitivity, PTAs will always contend with jitter.

While jitter becomes increasingly dominant at high sensitivities and low radio frequencies for the observed pulsar

population, it likely will not be a limiting factor for timing Galactic Center pulsars. Rescaling the flux densities of the

entire pulsar population in PSRCAT to their equivalent values at the distance of the Galactic Center yields 50% of

pulsars dominated by jitter at 8 GHz for Ssys = 0.3 Jy and 20% at 8 GHz for Ssys = 3 Jy. Optimistically, roughly 50%

of Galactic Center pulsars will have jitter-dominated TOA variations for the ngVLA, if observed at high enough radio

frequencies. These estimates do not explicitly account for scattering, which is significant near the Galactic Center and

further reduces pulsar flux densities.

For simplicity, we have assumed single-component Gaussian profiles to estimate the fraction of jitter-dominated pulsars

shown in Fig. 22. However, the presence of multiple pulse components alters the TOA errors due to radiometer noise

and jitter, by an amount that depends on the number of components and their phase overlap (see previous section).

This effect is compounded by the frequency-dependence of pulse components, making it difficult to quantify across the

pulsar population. The jitter fractions calculated here nonetheless provide useful benchmarks for understanding the

relative roles of jitter and radiometer noise for pulsar timing with current and future telescopes.

7.4. Estimation of jitter properties

The above subsections demonstrate how amplitude and phase jitter of single pulses increase ToA errors. The variety

of template shapes seen among pulsars with different numbers and mean amplitudes of components and different

component stochasticity implies that the net effect on ToAs is pulsar specific. For most pulsars it is difficult to make

a multicomponent predictive jitter model unless all parameters for each profile component can be estimated. This is

easiest if single pulses can be analyzed but in principle they could be estimated using N -pulse averages with variable

N . However, forward modeling of this kind is not necessary in order to assess the overall timing budget of a pulsar.

Several empirical methods can be used for identifying and quantifying jitter, some applicable to cases where single

pulses are strong and others when only average profiles can be analyzed:

1. Analysis of variance of ToAs: Modeling allows separation of a S/N dependent term (from template fitting) from

S/N-independent contributions, which are often dominated by jitter and sometimes accompanied significantly by

interstellar scintillation noise. M. T. Lam et al. (2016b) used this approach to characterize the jitter contribution

at 1.4 GHz in ∼60% of the MSPs reported in NANOGrav’s 9-yr data set ( NANOGrav Collaboration et al.

2015); the ToAs of the remaining 40% were dominated by template-fitting errors that prevented jitter from

being quantified. Typically, the RMS jitter is about 1% of the pulse period. Similar results were found in an

analysis of MSPs observed at Parkes (R. M. Shannon et al. 2014).

2. Cross correlation analysis of timing residuals between different frequency bands: Jitter is highly correlated across

frequency separations ≲ 1 GHz (R. M. Shannon et al. 2014) while additive radiometer noise is uncorrelated

and scintillation-caused TOA variations are correlated over separations ≲ scintillation bandwidth. The cross

correlation therefore can determine the contribution from jitter in relation to the other contributions. For single

pulses with S/N > 1 and frequency separations much wider than the scintillation bandwidth, the correlation

coefficient is close to unity.

3. Autocorrelation function analysis of template and single pulses: Pulse jitter always makes the template broader

than single pulses. So too is the ACF of the template vs. time (or phase) lag. For Gaussian pulse components and

a Gaussian phase jitter PDF, the net width of the template is the quadratic sum of a typical component width

and the RMS jitter multiplied by a factor accounting for multiple components. Let the widths of the two ACFs

be WU,acf and W1,acf , then the width of an effective phase jitter distribution is WJ,eff ≡ (W 2
U,acf −W 2

1,acf)
1/2/

√
2,

where the
√

2 accounts for the ACF width being larger than the widths of pulses by this factor. This method

was used by R. T. Edwards & B. W. Stappers (2003, Fig. 9) to show that single pulses are significantly (40%)

narrower than the template for the CP J1518+4904. A similar analysis of the MSP J1939+2134 (B1937+21)
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showed only a small difference in ACF widths (FWHM) for the ACF of template and the ACF of single pulses,

WU,acf −W1,acf ∼ 2µs with WU,acf ∼W1,acf ≃ 50µs, which was incorrectly interpreted as indicating the absence

of jitter (F. A. Jenet et al. 2001, Fig. 4). Using the quadrature difference in ACF widths and converting from

ACF width to width of jitter distribution yields WJ ≃ 7µs or σJ ≃ 3µs.

4. Crosscorrelation analysis of template and profiles vs. number of pulses averaged: The correlation coefficient for

single pulses with amplitude modulation index mc is

ρ(N) =

[
1 + (1 +m2

c)/(N − 1)

1 + (1 +m2
c)SU/(N − 1)

]1/2
≃ 1 − (1 +m2

c)(SU − 1)

2(N − 1)
, (7.8)

where the approximate equality applies for N ≫ 1 and SU = WU/Wa =
√

1 + (WJ/Wa)2 is the ratio of the

template width to the single-pulse width Wa. The absence of jitter corresponds to SU = 1 and perfect correlation,

ρ(N) = 1. Rearranging yields SU ≃ 1 + [2(N − 1)(1 − ρN )/(1 +m2
c)] from which WJ = Wa

√
S2
U − 1.

D. J. Helfand et al. (1975) first used this method to demonstrate how average profiles converge to template

shapes as N increases. Application to other CPS showed break points in 1 − ρ(N) vs. N for some objects,

indicating that pulse to pulse correlations persisted for a few to ≲ 100 pulses N. Rathnasree & J. M. Rankin

(1995). Application to millisecond pulsars by K. Liu et al. (2012) showed that jitter properties of MSPs are very

similar to those of CPs.
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Figure 24. Left panel: sequence of 500 pulses and average profile from the Vela pulsar J0835-4510 (P = 89 ms) at 2.7 to
3 GHz. Right panels: Analysis of pulse jitter. Top left: RMS arrival time error vs N = number of pulses averaged (blue) and
the predicted matched-filtering errors (red). The scaling with N is shown for two segments of the actual RMS error and for
the expected N−1/2 dependence if pulses are statistically independent. Top right: ToA deviations for two frequency bands
(2.725 and 2.975 GHz) that show the large correlation. Bottom left: Correlation coefficient ρ(n) between profiles calculated
from N pulses and the template shape, plotted as 1 − ρ(N) vs. N . Bottom right: Autocorrelation functions of single pulses
(⟨ACF of P ⟩) and of the template (ACF of ⟨P ⟩).

We demonstrate these methods using pulses from the Vela pulsar obtained with the Parkes telescope at 2 to 3 GHz

(Matthew Kerr, private communication; Ross Jennings, private communication). The strong single pulses, with average

single-pulse S/N ∼ 12, yield ToA errors dominated by jitter with minimal contributions from either radiometer noise

or DISS. A sequence of 500 pulses is shown in the left panel of Figure 24.
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The right panel of Figure 24 shows diagnostics of jitter in four frames. The top left shows the actual and predicted

(based on matched filtering) RMS ToA vs. the number of pulses N used to compute average profiles. The actual RMS

exceeds the predicted RMS by more than a factor of ten. The ToA errors are highly correlated between non-overlapping

frequency channels separated by 50 MHz (top right frame). The excess ToA variations are from pulse jitter and not

DISS because the latter would be uncorrelated between frequency channels. Using the values for the smallest N = 4

value shown, the RMS jitter for single pulses is σtJ(N = 1) ≃ 370µs.

Another estimate for RMS jitter results from the template-profile correlation analysis. The bottom left frame shows

1 − ρ(N) vs. N that declines with increasing N as expected for profiles shapes that converge to the template shape.

However, the scaling 1 − ρ(N) ∝ N−0.88 is slightly shallower than the N−1 dependence expected for pulse jitter that

is uncorrelated between pulses. Using Eq. 7.8 and 1 − ρ(4) ∼ 0.041 we obtain σJ(1) ≃ 310 to 390 µs for single-pulse

modulation indices of 1 to 1.5, consistent with the jitter value from ToAs.

Finally, the ACFs in the bottom right frame yield effective Gaussian widths (FWHM) of WU = 2.3 and Wa = 1.23 ms

for the template and single pulses, respectively. These yield a value, σtJ(1) ≃ 830µs, more than twice the values

obtained from the other methods; this is due to the fact that pulses comprise two primary components that cause

the template profile width to exceed that expected from single-pulse widths if there were only one component. Jitter

occurs independently in each of the two components and is thus about half the nominal value, or 415µs, consistent

with the other estimates.

It is useful to define a dimensionless jitter parameter fJ to allow comparison of pulsars. Expressing jitter as an

RMS quantity σtJ , we define fJ = σtJ/σU . Using the first two methods applied above to the Vela pulsar yields

fJ ≃ (370µs/2300µs)2
√

2 ln 2 ≃ 0.37. This value is similar to those obtained for other pulsars, including MSPs.

The chromaticity of average profiles (§ 6.3) follows that of single pulses. We therefore expect pulse jitter, though highly

correlated between nearby frequencies, to show only partial correlation for frequency ratios ≳ 2 : 1. Profile component

spacing changes slowly with frequency, thus so too will the centroid phases of single pulses. However, the amplitudes

of single pulses also appear to have limited bandwidths, albeit broad.

8. INSTRUMENTAL EFFECTS

While this paper’s primary focus is on astrophysical noise processes in pulsar timing, understanding and forecasting

of timing precision requires consideration of ancillary effects. Included here are brief summaries of several prominent

contributions, including polarization calibration, radio frequency and instrumental interference, digitization issues,

time transfer, and the accuracy of solar system ephemerides.

8.1. Instrumental polarization and calibration

Radio pulsar timing involves template fitting to Stokes I (total intensity) profiles. Any alteration of the Stokes I profile

from its true shape (or, more specifically, from the template shape) produces a ToA error. The polarized nature of

pulsar signals implies that improper calibration will contribute to such errors. The primary effects to consider are (a)

cross coupling between the antenna responses to the two desired polarization modes and (b) errors in the relative gain

calibration of the the two channels. The general issues of polarization calibration are well discussed in the literature,

but primarily for continuum and spectral line applications. Careful calibration of pulsar data is done routinely but

there is little assessment of its imperfections on arrival times.

For specificity, we consider two nominal circularly polarized channels. Generally, these will have responses with some

ellipticity and they need not be exactly orthogonal. The Jones matrix J encompasses these effects as a 2 × 2 matrix

whose complex elements determine the real elements of the 4×4 Mueller matrix M , which relates the measured Stokes

vector S ′ to the true S (defined in § 5.2).
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The Jones matrix for the feed antennas,

JA(θJA) =


1

(1 + ϵ21)1/2
ϵ1e

iψ1

(1 + ϵ21)1/2

ϵ2e
iψ2

(1 + ϵ22)1/2
1

(1 + ϵ22)1/2

 , (8.1)

is characterized with the parameter vector, θJA = col(ϵ1, ϵ2, ψ1, ψ2) and is augmented by a gain matrix. A full

expression for the corresponding Mueller matrix MGA that includes ellipticity and non-orthogonality is given by D. R.

Stinebring et al. (1984, Appendix A), which builds upon earlier work by R. G. Conway & P. P. Kronberg (1969), and

various factorizations of M are discussed in D. Han et al. (1997); M. C. Britton (2000); C. Heiles et al. (2001); W.

van Straten (2002, 2006, 2013); P. A. Gentile et al. (2018), including treatment of the Stokes vector as a Minkowskian

four vector.

Gain variations have a strong influence on the accuracy of Stokes parameters. Another matrix Jg(θJg = diag(gr, gl)

accounts for departures of the channel gains from unity. Together the product JgJA transforms the true electric fields

into the measured voltages. The corresponding Mueller matrix is MG. The combined Mueller matrix has a total of 6

parameters, θM = col(ϵ1, ϵ2, ψ1, ψ2, GR, GL) where Gl,r = |gl,r|2. An additional parameter can account for an overall

phase but can be absorbed into other quantities.

The simplest form for MGA is for orthogonal responses (found to be applicable in some cases) with ψ2 = ψ1 + π and

small coupling and gain elements, ϵ = ϵ1 = ϵ2 ≪ 1. and ∆G = GR −GL ≪ 1, with GRGL = 1,

MGA ≃

 1 0 0 (∆G)/2
0 1 0 −2ϵ cosψ1

0 0 1 −2ϵ sinψ1

(∆G)/2 2ϵ cosψ1 2ϵ sinψ1 1

 , (8.2)

This shows that Stokes-I is altered by Stokes-V and vice versa but the latter is also influenced by the linear polarization,

which itself is unaffected by Stokes-I.

To illustrate the effects on ToAs we use the simplest case of orthogonal polarization responses combined with differential

gains for the two hands of polarization, giving intensities I ′
R = GRIR and I ′

L = GLIL. Alteration of the Stokes I profile

depends on the first row of the Mueller matrix, which gives

I ′ = GI + ϵ∆G(cosψ1Q+ sinψ1U) + (∆G/2)V, (8.3)

where the average and differential gain are G = (GR + GL)/2 and ∆G = (GR − GL) and ϵ ≪ 1 is a measure of the

cross coupling. If all four Stokes parameters have the same temporal shape, only the amplitude of Stokes I is altered

with no change in ToA. However, polarization profiles of pulsars invariably differ from the Stokes I profile, so pulse

distortion and the resulting ToA error are inevitable.

We use the degrees of linear and circular polarization, dL and dV , to estimate the fractional error in Stokes I

δI

I
= (∆G/2) [dV + 2ϵdL cos(2χ− ψ1)] , (8.4)

where χ is the polarization angle of the incident field, and ψ1 is the phase of the cross coupling. We have set the average

gain G = (GR + GL)/2 = 1 and ∆G = (GR − GL). For wideband systems now used routinely in pulsar timing, the

frequency dependence of relevant quantities (i.e. ∆G, dV , dL, ϵ and the argument 2χ−ψ1) implies frequency-dependent

calibration. The error in Eq. 8.4 should then be considered for each subband in a wideband system, as implemented

in some pulsar analysis code packages.

Generally, pulse shapes in the polarized components differ from the Stokes I profile, so δI/I is a measure of the

distortion of the Stokes I profile. ToA errors scale as δToA ∼ (δI/I)W , where W is the profile width. In principle,

the measured profile can be corrected for cross coupling and the gain calibration difference ∆G thus made arbitrarily
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small. In practice, however, neither of these is the case and a ToA error is inevitable. We expect both ∆G and ϵ to be

small and often dV ≪ dL but the two terms inside the square brackets in Eq. 8.4 will typically be comparable unless ϵ

is very small. Using fiducial values, the ToA error (without the variable cos factor) is

δToA ≃ 50 ns

(
∆G

0.01

)(
W

100µs

)(
dV + ϵdL

0.1

)
. (8.5)

This expression applies to each subband or to the aggregate effect in a wideband system, where relevant quantities are

band averages.

Ongoing work has demonstrated the correctability of instrumental polarization and gain errors. This requires use

of template Stokes pulse profiles for a pulsar combined with average profiles obtained at different parallactic angles,

measurements of unpolarized continuum sources, and noise calibration signals to solve for cross coupling and gain

parameters along with arrival times and average flux densities at each epoch (D. R. Stinebring et al. 1984); see also

(C. Heiles 2002).

For our purposes here, we include the inference of arrival times along with Mueller matrix parameters. Writing the

model Stokes vector as Sm = col(s), s = (I,Q,U, V ),

Sm(t, t|t0, ψr, θM ) = MGA(θM (t))Mr(ψr)S(t− t0), (8.6)

where a rotation matrix Mr is included that could account for Faraday rotation of the wavefield before incidence

on antennas; t and t represent pulse phase and epoch, respectively. The cost function for template fitting (Eq. 6.17)

becomes

C(t0, ψr, θM ) =
∑
t

I,Q,U,V∑
s

∣∣Sm(t, t|t0, ψr, θM , t0, ψr) − S(t, t)
∣∣2 /Var(soff). (8.7)

With seven total parameters in the most general form for MGA(θM (t))Mr(ψr) or four parameters for the orthogonal,

small coupling case, there are sufficient degrees of freedom in pulsar profiles and ancillary data to estimate parameters

and allow inversion of the total Mueller matrix to calculate a corrected Stokes vector.

The question is, how well can instrumental polarization be removed to benefit ToA estimation, either from only Stokes-

I or from full-Stokes estimation? The recent studies cited above (see also S. Os lowski et al. 2013; P. A. Gentile et al.

2018; H. M. Wahl et al. 2022; L. Dey et al. 2024; A. F. Rogers et al. 2024) indicate that improvements of order a factor

of two or more are obtainable for some but not all cases. It is beyond the scope of this paper to assess individual

pulsars but it is clear that the demand for higer precision ToAs will require close attention to instrumental polarization

on a pulse-by-pulse basis as well as on a telescope-by-telescope basis.

8.2. Digitization and interference

Further ToA errors arise from aliasing and radio frequency interference . We describe both of these in general terms

by considering terms that add to true profile shapes. Unbalanced, interleaved analog-to-digital conversion (ADC)

yields an aliased copy of pulses that appear with, effectively, a negative dispersion measure. NANOGrav data analysis

routinely removes this deterministic effect, as described in (M. F. Alam et al. 2020). It requires determination of

the ADC imperfection (time skew with unequal separation of time samples or gain mismatch) and values for relevant

parameters. M. F. Alam et al. (2020) report correction of the dominant time skew to ∼ 10% of ToA errors that would

otherwise range from a few tens of nanoseconds to ∼ 1µs, depending on the pulsar’s DM and period.

Radio frequency interference (RFI) has diverse time-frequency signatures, including impulsive and oscillatory forms.

Additional instrumental inteference can originate from leakage of power-line oscillations into the signal path. In many

instances, the resulting pulse shape distortions are dramatic and the data are excised. In less severe cases, more subtle

oscillations may occur across the entire profile as oscillations or ripple in the profile baseline. Even low-level ripple can

skew ToAs but it is potentiallly correctable.
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A derivation of the effect of baseline ripple on arrival times (M. L. Jones et al. 2021, Appendices A and B) is summarized

and used here. Let the intensity profile include a sinusoidal ripple term with amplitude r and frequency fr,

I(t) = AU(t− t0) + r cos[2πfr(t− t0) + ϕ]. (8.8)

For a small ripple-to-signal ratio, r/A≪ 1, the template fitting error is written in terms of the Fourier transform Ũ ,

δtr = −
(
rfr
2πA

)
Im{e−iϕŨ(fr)}∫
df ′ f ′2|Ũ(f ′)|2

, (8.9)

where Im denotes imaginary part. For small ripple amplitudes, multiple ripple terms that add linearly to the net TOA

error can be easily dealt with, including an arbitrarily shaped baseline perturbation represented as a Fourier sum.

For a Gaussian pulse of width W and sinusoidal ripple, the ToA error is

δtr
W

= K sinϕ
( r
A

)(W
Pr

)
e−πK(W/Pr)

2
, (8.10)

with K = π/(4 ln 2). The error vanishes for sinϕ = 0 because the cosine maximum aligns with the peak of the

Gaussian. It also vanishes as W/Pr → ∞ because the increasing number of integrated ripple cycles integrated in

template matching leads to cancellation and also when W/Pr ≪ 1 because the perturbation is essentially constant

over the pulse. In terms of x = W/Pr, the scaled TOA error follows a universal curve δtrA/rW sinϕ = Kx exp
(
−πKx2

)
shown in Figure 25, which maximizes at xmax = 1/

√
2πK = 0.375, corresponding to a ripple period Prmax

≃ 2.67W

and ToA error δtr,max ≃ 0.258W (r sinϕ/A).

For persistent ripple in a multi-epoch data set, we expect ϕ to be uniformly distributed in [0, 2π] yielding σsinϕ = 1/
√

2.

Assuming constant r/A at the 1% level (only for illustration since ripple is episodic) and other fiducial values, the

RMS error is

δtr = 0.80µs ×
(
r/A

0.01

)(
W

100µs

)(
W

Pr

)
e−3.56(W/Pr)

2

. (8.11)

This error is nominally quite large compared to the best timing precision of MSPs < 100 ns. In most data, the various

factors in Eq. 8.11 evidently are much less than unity. However, there are data sets with substantial ripple that limit

timing precision (e.g. M. L. Jones et al. 2021).

8.3. Time transfer to the Solar System barycenter

Topocentric arrival times are assigned according to an observatory clock synchronized to a hydrogen maser that, in

turn, is synchronized to the time standard provided by the Global Positioning System (GPS) or other global navigation

satellite system. The maser provides short term stability of the observatory clock while global time standards provide

long-term stability Commercially-available hydrogen masers drift by ≲ 0.1 ns per day, and have achieved accuracies

of better than 1 part in 1016 (i.e., ∼few ns) over ∼year timescales.

Barycentric arrival times: Arrival time analyses are easiest in the quasi-inertial barycentric frame. Topocentric ToAs

are referenced to the Solar System barycenter (SSBC) by removing the light-travel time from the observatory to the

SBC, correcting for relativistic time offsets, and correcting for Doppler shifts. Given a topocentric ToA t(ν), the

barycentric ToA tb(ν
′) at the Doppler shifted frequency ν ′ is

tb(ν
′) = t(ν) +

r · n̂
c

+
(r · n̂)2 − |r|2

2cd
− KDMDM

ν ′2
+ ∆E⊙ + ∆S⊙ + ∆A⊙, (8.12)

where r is the observatory-SSBC vector26, n̂ is the unit vector from the SSBC towards the observed pulsar (see

Figure 26), KDMDM/ν ′2 is the frequency-dependent dispersion delay (introduced in § 5.5 and discussed in detail later

26 The observatory location is strictly the focal point of the telescope.
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Figure 25. The normalized ToA perturbation from baseline ripple. The dashed lines designate xmax = 0.38 and the maximum
of δτA/rW sinϕ = 0.26.

sections), and the ∆ terms are, respectively, the Einstein delay due to gravitational redshift and time dilation, the

Shapiro delay due to the curvature of spacetime around the Sun, and the aberration delay due to the Earth’s rotation.

Further explanation can be found in D. C. Backer & R. W. Hellings (1986); I. H. Stairs (2003) and S. Taylor (2021,

Ch. 3).

SSB

to Earth

r

⟨n̂⟩
to pulsar

n̂(t)

apparent direction

θr(t)

Figure 26. Left: The geometry of the observatory-SSBC-pulsar system where n̂ is the unit vector from the SSBC to the pulsar
and r is the vector from the SSBC to the observatory. Both vectors are functions of epoch due to, respectively, the pulsar’s
proper motion and the Earth’s spin and orbital motions. Right: In addition, the pulsar direction is slightly different in the
observatory frame from parallax and refraction in the ISM by an epoch dependent angle θr also can cause the apparent pulsar
direction to differ.

Translation of ToAs to the SSBC requires a maximum error in r tolerated by the astrophysical goals of the timing

program. The most demanding application, GW detection, therefore requires better than 50 light-ns precision. Along

with an observatory position on the surface of the Earth (updated, e.g., for continental drift), an accurate model

for the Earth’s rotation and orbit around the SSB is required27. Solar system ephemerides have been devised pri-

marily for interplanetary spacecraft navigation (e.g. R. S. Park et al. 2021) and also rely on spacecraft missions for

measurements of the mass and moment of inertia of the giant planets. Errors in estimating the location of the SSB

impose approximately a yearly sinusoidal variation in pulsar ToAs. Such a variation would be correlated for all pulsars

analyzed using the same ephemeris with a dipolar angular signature. For instance, the loss of the main antenna on

27 We note that the location of the SSB changes with respect to the Sun due to the orbits of the planets (primarily Jupiter and to a lesser
extent Saturn) and can be located outside the Sun at certain epochs.
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the Galileo spacecraft mission led to reduced tracking accuracy and hence a lower accuracy measurement of Jupiter’s

orbital elements, introducing correlated timing errors in the NANOGrav 11-year dataset. We refer the reader to M.

Vallisneri et al. (2020) for a detailed discussion.

As an aside, we note that very long baseline interferometry (VLBI) also involves telescope positions changing by large

distances compared to the observation wavelengths during the course of an observation due to the Earth’s rotation.

VLBI observations are typically referenced to the geocenter as a fixed point, and the reference frame created by VLBI

observations of distant quasars (which defines the International celestial Reference Frame; P. Charlot et al. (2020)

differs from the timing reference frame defined by solar system ephemerides at the 0.1–1 mas level (D. R. Madison

et al. 2013; A. T. Deller et al. 2019). As a result, the positions measured for pulsars via pulse timing (as discussed

below) and VLBI imaging can differ at the mas level, and can in turn be used to refine the frame tie between the two

systems.

8.4. Astrometric errors, proper motion, and parallax

Referencing ToAs to the SSBC also requires a precise sky position n̂ to calculate the delays in the second and third

terms of Eq. 8.12. An angle error of δθ = 1 mas yields an error in the SSBC ToA δt ≃ δθ× 1 au/c ≃ 2.42µs. Errors in

sky positions from VLBI are of this order while inclusion of the corresponding terms in the timing analysis allows sky

positions with smaller errors by up to two orders of magnitude.

Pulsars are moving targets owing to their proper motions, which can be as large as 1 arc sec yr−1, yielding a yearly

cyclical variation with growing amplitude if a fixed sky position is used for SSBC referencing. Instead, an appropriate

term is usually included in the timing analysis to solve for the proper motion and remove its contribution to the ToA.

Nearby pulsars can also show a sizable parallax (third) term in Eq. 8.12, ∆tϖ = (r · n̂)2 − |r|2/2cd, with a 6-month

period and maximum amplitude ∆tϖ ≃ 1.21µs d−1 for a pulsar in the ecliptic plane at distance d in kpc. This

effect can be measured and removed in the timing analysis of some pulsars and the corresponding angular parallax,

ϖ = (1 au/1 kpc) × d−1 = 1 mas × d−1, can be measured with VLBI for some objects.

Either way, parallax measurements are difficult: timing parallax can be masked by spin noise and interstellar fluc-

tuations while VLBI is subject to errors from plasma fluctuations in the ionosphere. Another issue is that, while

VLBI observations can provide independent measurements of the astrometric parameters for pulsars, incorporating

them into timing solutions requires addressing the reference frame ties between the two different systems. In practice,

incorporating VLBI measurements can help expedite the refinement of other timing parameters for a newly-timed

pulsar (e.g. D. R. Madison et al. 2013), but the self-consistency of astrometric parameters measured directly from the

timing observations has been prioritized in PTA observations so far.
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Part III. Interstellar Effects

9. ISM STRUCTURE AND PROPAGATION SCALING LAWS

The ISM is greatly heterogeneous in its density-temperature phase structure and with respect to mixtures of ionized,

atomic, and molecular gas. Radio propagation effects are strongest where the free electron density and magnetic fields

are largest. This then implies that the warm ionized medium (WIM) is the dominant phase contributing to pulse

propagation, with a minor contribution from the hot ionized medium (HIM) and minimally by atomic and molecular

clouds, where low level ionization occurs primarily from cosmic rays. Some contributions may involve interfaces

between discrete clouds and the WIM or HIM, which are subject to ionizing radiation or ionizing shocks.

For this paper, we are concerned with ISM effects on timing, so our focus is on descriptions of the medium insofar

as they are needed to quantify timing effects. Also, since timing is affected only minimally by magnetic fields (c.f.

Eq. 5.23-5.24), most of our presentation concerns the electron density and its fluctuations.

Dispersion and scattering both appear to result from the same regions along a line of sight where the electron density is

largest. This need not be the case, of course, because though all ionized regions contribute to DM, density fluctuations

on scales smaller than the Fresnel scale rF ≲ 1011 cm (106 km) are needed to produce multipath propagation. This

requires the occurrence of processes that create and sustain density fluctuations, such as shocks from supernovae and

cloud-cloud collisions, and bow shocks from super-Alfvénic stellar motions. These are local processes whose occurrence

is much higher in the inner Galaxy than at the solar circle and beyond.

Dispersion, scattering, and Faraday rotation are used to probe and model ISM structure. Galactic electron density

models (e.g. NE2001, J. M. Cordes & T. J. W. Lazio 2002; J. M. Yao et al. 2017, hereafter YMW16) are used primarily

for estimating pulsar distances from their DMs and for estimating foreground contributions to the DMs of FRBs. These

models include parameterized large scale structures (thin and thick disks and spiral arms) that are constrained by pulsar

DMs. NE2001 also models density fluctuations on large and small scales using a power-law wavenumber spectrum

along with parameters for the strength of the fluctuations in different Galactic locations. Electron density models are

also integral to modeling the Galactic magnetic field (e.g. M. Unger & G. R. Farrar 2024) using large samples of RMs

from pulsars and extragalactic sources (AGNs, and FRBs) (e.g. for FRBs A. Pandhi et al. 2022).

9.1. Interstellar electron density wavenumber spectrum

A power-law wavenumber spectrum is the most frequently assumed form because fluctuations in electron density are

known to exist in the ISM on a large range of scales (e.g. L. C. Lee & J. R. Jokipii 1976; J. M. Cordes et al. 1991;

J. W. Armstrong et al. 1995; A. Chepurnov & A. Lazarian 2010; K. H. Lee & L. C. Lee 2019). In this respect, the ISM

parallels the interplanetary medium (IPM), which is much better characterized with in situ satellite measurements

along with ground-based remote sensing. The IPM displays density and magnetic-field fluctuations with power-law

spectra that include an inertial subrange, with a Kolmogorov slope during some of that range, (e.g. A. A. Schekochihin

et al. 2009) and dissipation on small scales. IPM turbulence is anisotropic and combines with other structures generated

by solar activity (C. W. Smith & B. J. Vasquez 2021). As with the IPM, there is evidence for anisotropies in the ISM

along some lines of sight, implying that turbulent eddies have preferred orientations due to magnetic fields in specific

regions in the ISM. A general form for the spectrum Pδne(q) with a vector wavenumber q includes this anisotropy as

an argument (Aq2x +A−1q2y)1/2, where A is the axial ratio. However, to focus on integrated effects along a LoS, which

likely average over anisotropies, we adopt an isotropic form for the spectrum,

Pδne
(q) = C2

nq
−βe−(q/qi)

2

, (9.1)

where C2
n is the spectral coefficient and the wavenumber cutoffs or rolloffs qi, qo correspond to the inner and outer

scales of the fluctuations, qo = 2π/lo and qi = 2π/li. The integral over all wavenumbers gives the density variance,
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Figure 27. Schematic wavenumber spectrum for electron density. Though density fluctuations span more than 14 orders of
magnitude in wavenumber, it has not been demonstrated that a turbulent cascade is responsible nor that any single process
underlies all scales. Additionally, strong evidence exists for the presence of discrete structures on some scales that enhance
fluctuations that do appear to follow a power-law form.

σ2
ne

=
∫
dqPδne(q) with dq = 4πq2dq. Examples of this and similar spectral forms can be found in L. C. Lee & J. R.

Jokipii (1976); J. M. Cordes et al. (1985); W. A. Coles et al. (1987); J. W. Armstrong et al. (1995) and J. W. Goodman

(1985), among many others. A Kolmogorov spectrum corresponds to a spectral index β = 11/3.

The shape and amplitude of the spectrum, shown schematically in Fig. 27, varies spatially across different regions of

the Galaxy via changes in the cutoffs and possibly in the value of β. Length scales described by the spectrum span

more than ten orders of magnitude with li ≲ 103 km and lo ∼ 100 pc in the thick disk component of the Galaxy. The

very large outer scale is essentially irrelevant to timing measurements made over tens or even hundreds of years, so

the specific form is not critical.

Support for the general form of the spectrum includes radio astronomical measurements of pulsars and other objects

(e.g. J. W. Armstrong et al. 1995); small scales are sampled by scattering measurements while the largest scales for

these objects are probed in decades-long time series of dispersion measures. Familiar Galactic structures (atomic and

molecular clouds, HII regions, filaments, etc.), some of which are known to include turbulent motions, comprise the

largest scales.

Additional evidence for a broad power-law spectrum comes from studies of the cosmic ray proton energy spectrum,

which extends from ∼ 1 to 108 GeV in a smooth power law (with a change in slope at higher energies). Protons

scatter off of magnetic irregularities on scales comparable to their gyro radii, rg ≃ 0.074 au ×E(GeV)(B/3 µG). The

smoothness of the proton spectrum implies a spectrum of magnetic irregularities spanning a range at least as large

as ≲ 0.1 au to 40 pc. In theories of compressible turbulence, these magnetic fluctuations are accompanied by density

fluctuations on the same scales (e.g. J. R. Jokipii 1988; P. Goldreich & S. Sridhar 1995).

There are strong variations in the spectral coefficient C2
n, the inner, and the outer scale across the Galaxy. The

outer scale appears to be smaller in denser regions toward the inner Galaxy and larger in the thick disk component

of the electron density distribution. The notion that a continuous broad spectrum of scales is produced by a single

physical process has not been demonstrated in the ionized ISM. Though a turbulent cascade plausibly accounts for
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some of the wavenumber range, the diversity of density-temperature regimes in the ISM (B. T. Draine 2011) suggests

that multiple processes are at work. There appear to be small, discrete structures in the ISM that superpose with

power-law fluctuations that distort the wavenumber spectrum from a pure power-law with fixed spectral index. Their

presence is manifested in ESEs, refractive scintillations from pulsars and active galactic nuclei (AGNs), and diffractive

scintillations and DM variations from pulsars (J. A. Roberts & J. G. Ables 1982; A. Hewish et al. 1985; J. M. Cordes

& A. Wolszczan 1986; R. L. Fiedler et al. 1987; R. W. Romani et al. 1987; I. Cognard et al. 1993; J. Lestrade et al.

1998; V. Maitia et al. 2003; K. W. Bannister et al. 2016; H. K. Vedantham et al. 2017; M. Kerr et al. 2018; T. A.

Koryukova et al. 2023). The statistics of such structures are not easily modeled because they are both sparse and

diverse in nature.

The figure designates regions defined by characteristic propagation scales that are indicated with approximate values

along the top horizontal axis. From smallest to largest, these are the diffraction scale, the Fresnel scale, the refraction

scale corresponding to the size of the scattering disk (c.f. Figure 15), and still larger scales that are manifested as

variations in DM and refractive scintillations. These scales are discussed in more detail in § 9.3.

9.2. Propagation through plasma fluctuations with a power-law wavenumber spectrum

A thin screen suffices for identifying and analyzing propagation effects relevant to pulsar timing, which we summarize

here. Thick screens or otherwise extended media yield the same phenomena but with different amplitudes and scaling

laws that need consideration for analyzing individual LoS. These are described more selectively in what follows.

The phase structure function appears frequently in analyses of wave propagation because many observables are related

to phase differences rather than to the absolute phase. Specifying ϕ(x) as the electromagnetic phase perturbation

induced by a screen and δx as a transverse spatial separation across the screen, the phase SF is

Dϕ(δx) ≡
〈

[ϕ(x + δx) − ϕ(x)]
2
〉
. (9.2)

where x and δx are vectors in the screen plane transverse to the propagation direction. In terms of the wavenumber

spectrum Pδne
(q; z),

Dϕ(δx) = 4π(λre)
2

∫
dz

∫
dq⊥ [1 − eiq⊥·δx]Pδne(q⊥, qz = 0; z). (9.3)

Application to specific cases must take into account that a source embedded in or near the medium emits diverging,

spherical waves, which requires the replacement δx → (z/dso)δx in the complex exponential, where dso is the source-

observer distance.

For isotropic density fluctuations, the spectrum depends only on |q⊥| and integration over azimuthal angle in the q⊥
plane yields an SF dependent only on the scalar offset δx,

Dϕ(δx) = 8π2(λre)
2

∫
dz

∫
dq⊥[1 − J0(q⊥δx)]Pδne(q⊥, qz = 0; z). (9.4)

For the spectrum in Eq. 9.1 with isotropic irregularities and plane-wave incidence on a screen, the phase structure

function is proportional to the product λ2SM, a measure of the scattering strength where SM is the LoS integral of

C2
n. It has three regimes defined by the spatial offset δx and the wavenumber cutoffs,

Dϕ(δx) = (λre)
2SM ×



π2Γ(2 − β/2) q4−βi δx2, qiδx≪ 1 I. Square-law regime,

fβ δx
β−2, q−1

i ≪ δx≪ q−1
o II. Inertial subrange regime,(

8π2

β − 2

)
q2−βo , qoδx≫ 1. III. Asymptotic regime,

(9.5)

where

fβ =
8π2Γ (2 − β/2)

(β − 2)2β−2Γ(β/2)

β=11/3≃ 88.3. (9.6)
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The three scaling regimes are, respectively, for: (I) lags δx smaller than the inner scale, where Dϕ ∝ δx2lβ−4
i is a

function of the inner scale (≲ 103 km for the ISM); (II) intermediate lags between the inner and outer scale (the inertial

subrange), where the dependence is shallower, Dϕ ∝ δxβ−2 and independent of either scale; and (III) lags much larger

than the outer scale, δx ≫ q−1
o , where the SF asymptotes to a constant ∝ lβ−2

o that can be very large (many square

radians) if the outer scale is large.

The form of the phase SF Dϕ(b) is given in Eq. 9.5 for an isotropic medium where only the magnitude b = |b| matters.

The scattered image of a point source is the 2D Fourier transform of the visibility (the van Cittert-Zernike theorem);

these are given by

Γ(b) = e−Dϕ(b)/2, I(θ) =

∫
db eikb·θΓ(b), (9.7)

where b is a vector between two positions in the observation plane. The phase SF in the observation plane is identical

to that in the screen plane (with δx replaced by b for scattering through a thin screen).

For isotropic density irregularties, the expressions depend only on the magnitudes of b and θ. Many observations

of scattered images are in the square-law regime (I) in order for scattering diameters to be resolved with terrestrial

baselines. Observations of Cyg X-3 (L. A. Molnar et al. 1995) spanned the transition between the square-law and

inertial subrange regimes and thus provided an estimate of the inner scale ∼ 300 km (50% error). A study of angular

scattering along eight lines of sight by S. R. Spangler & C. R. Gwinn (1990) indicates values li ≃ 50 to 200 km.

Radio pulsar timing measurements at ∼ 0.5 to 1 GHz are largely in regime II except for distant pulsars observed at

low frequencies where the square-law regime applies. The differences between regimes I and II are relevant to methods

for correcting ToAs for scattering delays. The asymptotic regime III corresponds to (twice) the total phase variance

along a line of sight and is dominated by large scale Galactic structure. The amplitude in this regime can be related

to the spatial variations of pulsar DMs.

9.3. Scaling laws for propagation effects from a power-law density spectrum

Here we define useful quantities for describing dispersion, scattering, and scintillation that we present as scaling laws in

Table 4 along with evaluations for a Kolmogorov spectrum (β = 11/3). Where unspecified, the units used are distances

in kpc, radio frequencies (ν) in GHz, fluctuation frequencies (f) in cycles yr−1, velocities in 100 km s−1, and time lags

(δt) in yr. Scattering measures are SM = 10−3.5 SM−3.5 kpc m−20/3.

DM variations: The asymptotic phase structure function implies a total RMS dispersion measure σDM =

(λre)
−1 [Dϕ(∞)]

1/2
that is also dominated by the largest scales in the spectrum for β < 4. Using qo = 2π/lo, we

obtain the first entry in Table 4.

DM structure function: The DM SF is closely related to the phase SF, DDM(δx) = (λre)
−2Dϕ(δx), and it is useful for

ISM diagnostics (c.f. § 10) to express the spatial offset as a time offset multiplied by an effective velocity, An expression

that applies to thin screens and extended media alike is

DDM(δt) = fβ

∫ dso

0

dsC2
n(s) |veff⊥(s)δt|β−2

, (9.8)

where veff⊥ = (s/dso)vp⊥ +(1−s/dso)vobs⊥ and the effective scattering measure SMeff ≤ SM is the weighted integral,

SMeff =

∫ d

0

ds̄C2
n(s̄) (1 − s̄/d)

β−2
. (9.9)

For a thin screen at distance dsl from the source, SMeff = SM(1 − dsl/dso)β−2. If the pulsar velocity dominates the

time dependence, the expression simplifies to the form given in the second line of the table. Additional contributions

to DM(t) from discrete ISM structures and from the solar wind augment the SF, as discussed in § 10.

DM power spectrum: The power spectrum is the Fourier transform of the ACF, RDM(τ) = RDM(0)−DDM(τ)/2. The

result is given in the fourth line of Table 4.
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Table 4. Dispersion, Scattering, and Scintillation Scaling Laws for Power-law Media

Item Quantity Expressiona Evaluation for β = 11/3b

No. Coefficient Scaling

1 SM
(2π)β−2

fβr2ec(β+2)/2

[ τ

d ′

](β−2)/2

νβ 10−3.26 kpc m−20/3
(
τ1/d

′)5/6
2 σDM

(2π)(4−β)/2

(β − 2)1/2
l(β−2)/2
o SM1/2 0.097 pc cm−3 l

5/6
o (pc) (τ1/d ′)

5/12

3 DDM(δt)
Dϕ(veffδt)

(λre)2
=

(δt/∆td)β−2

(λre)2
(
2.15 × 10−4 pc cm−3

)2
(δtyr/∆td100)5/3

4 SDM(f) aβSMveff
β−2f−(β−1) (7.70 × 10−5 pc cm−3)2

cy yr−1
v
5/3
100 (τ1/d

′)
5/6

f−8/3

5 rF
(
λd ′/2π

)1/2
8.1 × 10−3 au (d ′/ν)1/2

6 ldI
=

ldθ

21/(β−2)

1

2(4−β)/2(β−2)

1

2πν

(
cd ′

τ

)1/2

1.43 × 104 km ν6/5 (d ′/τ1
)1/2

7 lr rF
2/ldI

0.69 au ν−11/5 (
d ′τ1

)1/2
8 θd (FWHM)

2
√

ln 2

π

λ

ldθ

1.51 mas ν−11/5 (
τ1/d

′)1/2
9 θr (RMS) (c/2πν)[Dϕ(lr)]

1/2/lr 0.157 mas ν−49/30 d ′−1/2
τ
1/3
1

10 νtrans ν(2πτν/C1)(β−2)/(β+2) 13.1 GHz (τ1/C1)1/2

11 τ
d ′θd

2

8 ln 2 c
0.44 µs ν−22/5d ′θ21(mas)

12 ∆νd C1(2πτ)−1 0.16 MHz ν22/5(C1/τ1)

13 ∆td
ldI

veff
143 s ν6/5 v−1

100

(
d ′/τ1

)1/2
14 ∆tr

lr
veff

or
1

∆td

(
rF
veff

)2

11.9 d ν−11/5 v−1
100

(
d ′τ1

)1/2
15 ∆νsb (2π∆td)−1 0.97 mHz ν−6/5 v100

(
τ1/d

′)1/2
16 Ns ηtην(B/∆νd)(T/∆td) 3960 ν−28/5 BGHzT1000v100

(
τ3
1 /d

′)1/2
a Expressions are for the strong scintillation regime and a thin screen with phase structure function Dϕ(b) ∝ bβ−2 .

b Numerical results for β = 11/3 use scattering time τ1 ≡ τ(1 GHz) = 1µs, angular scattering diameter θ1 ≡ θd(1 GHz) = 1
mas, effective distance d ′ = 1 kpc. The center frequency ν is in GHz.

Definitions and units:

All distances are in kpc: (dso, dsl, dlo, d
′ = effective distance ≡ dsldlo/dso)

f = fluctuation frequency (cycles yr−1)

SM = scattering measure =
∫ dso
0

dsC2
n(s) = 10−3.5 SM−3.5 kpc m−20/3 , SMeff =

∫ dso
0

dsC2
n(s)(1 − s/d)β−2

aβ =

[
π1/2

(2π)β−3

Γ((β − 1)/2)

Γ(β/2)

]
β=11/3→ 0.494, fβ =

8π2Γ (2 − β/2)

(β − 2)2β−2Γ(β/2)

β=11/3→ 88.3

lo = outer scale in pc, v100 = effective transverse velocity = v⊥/(100 km s−1)

∆νd and ∆td = scintillation bandwidth and scintillation time for DISS, ∆tr = scintillation time for RISS

C1 ≃ 1 to 2 (dependent on β and line of sight distribution of electron density fluctuations)

ηt ∼ ην = 0.3 (filling factors); B = bandwidth in GHz; T = observation time in 1000 s.
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RM fluctuations: Though RM variations are not of great concern for precision timing of low-DM and low-RM pulsars,

for completeness, we point out that for a constant magnetic field along the LoS, RM = (e3/2πm2
ec

4)B∥DM = 0.81B∥DM

(c.f. Eq. 5.21), where the numerical value holds for standard units of rad m−2 for RM, pc cm−3 for DM, and fields

in µG. DM structure functions etc. are then easily transformable to RM structure functions. However, we note that

A. H. Minter & S. R. Spangler (1996) have shown that electron density fluctuations are accompanied by magnetic

field fluctuations, also consistent with a Kolmogorov spectrum, which increase the RM SF over that from density

fluctuations alone.

Fresnel scale (rF): The rough division between diffraction and refraction is defined by the Fresnel scale. For a

thin screen at dsl from the source, rF = 2π/qF =
√
λd ′/2π ∼ 0.01 au ∼ 106 km, where the effective distance is

d ′ ≡ dsldlo/dso with dlo = dso − dsl.

Diffraction scale (ld) and visibility function (Γ(δx)): Diffraction is caused by scales ld smaller than the Fresnel scale.

Most pulsar measurements correspond to very small diffraction scales ld = 2π/qd ∼ 102 to 104 km. These appear to

straddle the inner scale li, ∼ 100 to 103 km (e.g. B. Rickett et al. 2009).

The diffraction scale is related to the size of the scattered image, the pulse broadening time τ , and the DISS bandwidth

∆νd. It is convenient to use two definitions, one for which the visibility function = 1/e given by Dϕ(ldθ
) = 2 rad2,

and another from Dϕ(ldI
) = 1 rad2, which yields the 1/e scale of the intensity rather than the field, as in item 6 of

Table 4.

Scattering diameter (θd): A scattered image represents the distribution of angles into which incident radiation from a

point source is scattered. Scattered images are generally non-Gaussian but a convenient scattering diameter is obtained

by matching a Gaussian function to the non-Gaussian image at the half-amplitude value. This yields a scattering

diameter (FWHM) θd = 2
√

ln 2λ/πld. An observer sees a scattering diameter θobs = (dsldlo/dso)θd ≡ d ′θd ≲ θd that

is larger for screens close to the observer. The scattering disk is the patch size of the cone of rays contributing to

the scattered radiation measured by an observer (Fig. 15). The patch or cone size is ℓcone = dloθobs for an observed

scattering disk size θobs from a screen at distance dlo from the observer.

Refraction scale (lr): Refractive scintillations result from scales that focus or defocus incident waves according to

geometrical optics. For a Kolmogorov-like spectrum, refraction is dominated by scales lr ∼ ℓcone. A convenient

relation between the refraction and diffraction scales is ldlr ≡ rF
2. DM variations on time scales up to ∼ 50 yr

correspond to lengths up to∼ 103lr ∼ 103 au.

Pulse broadening function pd(t)and its 1/e time scale τ : An emitted impulse arrives differentially along multiple

scattered ray paths. For a screen, ToAs are directly related to the square of AoAs. The distribution of arrival times is

the pulse broadening function (PBF), usually characterized with a 1/e width. The PBF and τ typically are measures

of only geometrical path length delays and exclude any differential dispersion between individual ray paths. This and

other complications, such as the relation between the mean scattering time and analysis methods are discussed in

other sections.

Diffractive interstellar scintillation (DISS) bandwidth ∆νd: Diffraction yields a spatial intensity pattern from con-

structive and destructive interference with a characteristic scale ld in the observation plane (transverse to the line of

sight). The diffraction pattern also has a characteristic diffraction bandwidth ∆νd (also known as the scintillation or

decorrelation bandwidth). Like the pulse broadening time, it is determined by path length differences and the two are

related by an ‘uncertainty’ relation (J. M. Sutton 1971),

2π∆νdτ = C1, (9.10)

where C1 ≃ 1 to 2 is a constant dependent on the the index β of the wavenumber spectrum. This relation applies to

all cases (not just thin screens) with C1 also depending on the thickness and location of the scattering region (J. M.

Cordes & B. J. Rickett 1998; H. C. Lambert & B. J. Rickett 1999). At frequencies ν ≲ 1 GHz, the DISS bandwidth is

small, ∆νd ≪ ν.

DISS time scale ∆td: Sweep of the diffraction pattern across the LoS by an effective velocity veff yields the scintillation

time scale (or decorrelation time) ∆td = ld/veff . In most cases, the effective velocity is dominated by either the pulsar
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or the observer’s motion; bulk or turbulent motions of the screen appear to be small enough so that the diffraction

pattern may be considered frozen.

Refractive interstellar scintillation (RISS) time scale ∆tr and bandwidth ∆νr: Similarly, the refraction time scale is

∆tr = lr/veff . Because RISS does not involve constructive/destructive interference, it is correlated over wide frequency

ranges, ∆νr ∼ ν.

Diffractive spectral broadening ∆νsb: While not relevant to broadband pulsar signals, we include spectral broadening

for completeness and because it may be relevant to narrowband FRBs. A narrowband signal is broadened by phase

fluctuations that ensue from transport of the diffraction pattern across the LoS, yielding changes in frequency δν ∼
(dϕ/dt)δt. One can also view this as the frequency broadening of a pure sine wave modulated by DISS. The broadening

bandwidth ∆νsb is related to the scintillation time by another uncertainty relation (J. M. Cordes & T. J. Lazio 1991),

2π∆νsb∆td ≃ 1.

Together, the DISS bandwidth and time scale determine the number of scintles contributing to an observation over a

total bandwidth B and time span T .

Figure 28 shows the scintillation time and number of scintles vs. frequency for five DM values. These scale with

frequency as ∆td ∝ ν−6/5 and Ns ∝ ν−28/5 for a Kolmogorov spectrum when the scintillations are strong and the

inertial subrange of wavenumbers is applicable. These quantities are calculated from the scattering time τ1 evaluated

using Eq. 10.16 and assuming a thin screen midway to the pulsar. They also assume an effective transverse speed

of 50 km s−1 (corresponding to a pulsar velocity of 100 km s−1 and a screen midway between pulsar and observer

(s = 1/2) and assuming negligible contribution from Earth’s velocity or from the ISM).

Figure 29 shows scintillation times vs. DM for different frequencies (left) and different effective velocities (right) at

1 GHz. The right-hand panel also shows measured scintillation times scaled to 1 GHz for 136 pulsars. The red points

designate MSPs (P ≤ 10 ms) and the yellow points indicate large scintillation times that occur yearly for three MSPs.

The velocity labels are the assumed pulsar velocities for the three black lines, which apply only for a midway scattering

screen.
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Figure 28. Computed values for the scintillation time (left) and number of scintles (right) for a thin screen with Kolmogorov
fluctuations. The number of scintles is calculated for a 20% bandwidth. Solid lines indicate where the scintillations are strong
with ∆νd ≤ ν and where the scintillation time scale exceeds the scattering time. The black dots show the transition to weak
scattering with dashed lines indicating the scaling that otherwise would have occurred. The red dot marks the transition where
the scattering time equals the scintillation time scale. The curves are calculated for a pulsar speed of 100 km s−1 and a screen
midway to the pulsar, giving veff = 50 km s−1. A larger effective speed shifts the scintillation time downward ∝ 1/veff and the
number of scintiles ∝ veff .
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Figure 29. Computed values for the scintillation time vs. DM for different frequencies and a pulsar velocity = 100 km s−1

(left) and for three different pulsar velocities (right). As with Figure 28, calculations are for a thin, midway screen (s = 1/2)
with Kolmogorov fluctuations. Measured values of ∆td are shown for millisecond pulsars (red) and pulsars with P > 10 ms
(black). The yellow points for three pulsars show maximum values for ∆td that ensue from annual variations. Data are from
J. M. Cordes (1986); P. F. Wang et al. (2018); S. Johnston & M. E. Lower (2021); Y. Liu et al. (2022).

9.4. Scintillation and scattering regimes

Except for observations at frequencies above ∼ 5 GHz for the nearest pulsars, the phase variance across one Fresnel

scale in the screen is many square radians. In this so-called strong scintillation regime, the various length scales defined

above satisfy the inequalities when the diffraction scale is larger than the inner scale (ld > li),

li ≪ ld ≪ rF ≪ lr ≪ lo, Strong scintillation. (9.11)
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Figure 30. Weak and strong regimes for diffractive interstellar scintillation (DISS). The transition frequency νtrans(DM) (red
line) was calculated by approximating νtrans ∼ ∆νd and using the τ(DM) ‘hockey stick’ relation in Eq. 10.16 along with the
uncertainty relation Eq. 9.10 to calculate ∆νd(DM). The νtrans line is fuzzy given that there is empirical spread around the
nominal τ(DM) relation. Lines of constant scattering time τ = (2π∆νd)−1 are also based on this relation.
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In the hyperstrong scintillation regime, the order of li and ld is interchanged when the product λ2SM is large:

ld ≪ li ≪ rF ≪ lr ≪ lo, Hyperstrong scintillation. (9.12)

If the RMS phase variation on the Fresnel scale is small, i.e. Dϕ(rF) ≪ 1 rad2, the diffraction and refraction scales

merge and the only characteristic scale manifested in scintillations is the Fresnel scale:

li ≪ ld ∼ lr ∼ rF ≪ lo, Weak scintillation. (9.13)

The transition from weak to strong scintillation occurs at a frequency that is LoS dependent and can be calculated in

two ways. First by finding the frequency where the phase structure function Dϕ(rF) = 1 rad2 and second by requiring

ν = ∆νd. Either approach gives νtrans ≃ ν[2πτ(ν)ν](β−2/(β+2) = ν[2πτ(ν)ν]5/17 for a scattering time τ(ν) measured

at frequency ν. Using Eq. 9.5 and solving for ν yields the expression for νtrans in Table 4 in terms of the scattering

time τ .

The boundary between weak and strong scintillation is shown in Figure 30 for DMs from 1 to 1000 pc cm−3. Strong

scintillation corresponds to diffractive scintles being narrower than the radio frequency, ∆νd ≪ ν. This becomes

τ ≫ C1/2πν > 0.16 nsC1ν
−1 (ν in GHz, as usual) from the uncertainty relation in Eq. 9.10.

Most pulsar observations in the strong-scintillation regime are below the νtrans line where DISS is 100% modulated (if

there is no bandwidth smoothing). In particular, most MSPs observed in PTA programs are in the strong scintillation

regime apart from a few low-DM objects observed near the transition line, including J0437−4715 (DM = 2.6 pc cm−3).

Near the transition region 2πτν ∼ 1 there is no bandwidth attenuation of the ∼ 100% intensity fluctuations, so arrival

time precision will vary markedly from the highly variable S/N. Conversely, large scattering times, e.g. those with

τ ≳ 0.1µs, correspond to intensities that are far less modulated by a factor ∝ (2πτB)−1 for bandwidths B ≫ 1 MHz

like those used in current receivers.

e

10. INTERSTELLAR ANALYTICS

Interstellar propagation effects are significant limiting factors in timing precision at radio wavelengths with current

practices. To understand these limits and develop methods for improving arrival times, it is important to characterize

and understand the ISM as much as possible. The phenomena and scaling laws summarized in §9 and Table 4 are

diagnosed and tested using various tools applied to observational data for pulsars and other objects. Our emphasis is

on pulse broadening and intensity scintillations, which are more directly intertwined with estimates of timing precision.

10.1. Dispersion measures

A primary tool for characterizing DM fluctuations is the DM structure function defined earlier and evaluated in

Eq. 9.8 for the power-law electron density spectrum (Eq. 9.1). Here we include further contributions to DM(t) that

are manifested in some pulsar timing data sets.

DM varies because motions of the Earth, ISM, and pulsar change the Earth-pulsar distance and direction of the LoS. For

velocities v ∼ 100 km s−1, distances ∼ 1 kpc, and time scales t ≲ decades, the fractional change in distance vt/d ≲ 10−6

and it is dominated by velocity components parallel to the line of sight whereas the direction of propagation is due to

transverse components. Using ve∥ and vp∥ for the parallel velocities of the Earth and pulsar, the time dependence of

DM is (e.g. M. T. Lam et al. 2016a)

DM(t) = DM(0) +
{
ve∥ne[xe(t)] − vp∥ne[xp(t)]

}
t+

∫ dso0

0

ds∆ne(s, t), (10.1)

where the second term is linear in time and involves electron densities ne[xe(t)] and ne[xp(t)] that are averaged at

the observer’s and pulsar’s locations over LoS segments of length ve∥t and vp∥t, respectively. The integrand in the
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stochastic third term,

∆ne(s, t) = ne[xp0 + n̂0s+ veff⊥(s)t] − ne[xp0 + n̂0s], (10.2)

involves the transverse components of the effective velocity,

veff⊥(s) = veff(s)(I− n̂0n̂0) = (1 − s/dso)vp⊥ + (s/dso)ve⊥ , (10.3)

using the 2 × 2 unit matrix I. Eq. 10.2 is general but we now consider only interstellar contributions. The DM

structure function then combines the contribution from the power-law density variations presented in Eq. 9.8 with

terms involving the electron density in local interstellar environments of the pulsar and the solar system. Breaking

these into ‘linear’ and ‘power-law’ terms,

DDM(δt) =D
(lin)
DM (δt) +D

(pl)
DM(δt)

≃
[
ve∥ne(xe) − vp∥ne(xp)

]2
(δt)2 + fβ

∫ dso0

0

dsC2
n(s) [veff⊥(s)δt]

β−2
. (10.4)

If the pulsar velocity dominates the time dependence, then

DDM(δt) ≃ ne
2(xp) (vp∥δt)

2 + fβ SMeff (vp⊥δt)
β−2. (10.5)

For nominal values of electron density, scattering measure, and transverse pulsar velocity, the DM structure function

terms are

D
(lin)
DM (δt)≃

[
3.1 × 10−6 pc cm−3 ×

(
ne

0.03 cm−3

)( vp∥
100 km s−1

)]2
× (δtyr)

2,

D
(pl)
DM(δt)≃

[
7.8 × 10−4 pc cm−3 ×

(
SMeff

10−3.5 kpc m−20/3

)1/2 ( vp⊥
100 km s−1

)5/6]2
× (δtyr)

5/3. (10.6)

By definition the DISS time scale ∆td = ld/veff⊥ corresponds to a phase structure function value Dϕ(ld) = 1 rad2.

Using DDM = (λre)
−2Dϕ, this yields an empirical scaling law for the power-law component (second term in Eq. 10.4)

with ν in GHz,

D
(pl)
DM(δt) =

(
1

λre

)2(
δt

∆td

)β−2

= (3.84 × 10−8 pc cm−3)2 × ν2
(
δt

∆td

)β−2

. (10.7)

Measurement errors contribute a constant floor to the structure function that is twice the noise variance, 2σ2
DM, noise

for all δt > 0.

For some pulsars, published structure functions show features with both the quadratic τ2 term and the shallower

Kolmogorov-like term ∝ τβ−2 → τ5/3 (B. J. Rickett 1990; J. M. Cordes et al. 1990; V. M. Kaspi et al. 1994; M. J.

Keith et al. 2012; M. T. Lam et al. 2016a). The results are consistent with the overall picture that the ISM includes

density structure on a wide range of scales extending from ≲ 103 km to ≳ vpT ∼ 600 au for 100 km s−1 and data

spans of T ≳ 30 yr.

The DM time series for MSP J1909-3744 (Fig. 31) shows two additional features not seen for B1937+21: an annual

variation and a linear trend over most of the 15-yr data set. The annual variation is due to the close approach of

the LoS to the solar corona and the linear downward trend that appears to bottom out and reverse suggests that

motion of the pulsar through a local region of variable electron density is in action. In a study of 37 MSPs in the

NANOGrav timing program, M. L. Jones et al. (2017) found that 19 objects show periodic, yearly variations consistent

with contributions from the solar corona and 28 show linear-like trends.

Fig. 32 shows a DM time series for PSR B1937+21 over a 15 yr span in the NANOGrav data set (G. Agazie et al.

2023b). It is possibly the superposition of a downward secular trend and a stochastic component with a red power

spectrum, but, unlike the case of J1909-3744 discussed below, it is actually consistent with fluctuations expected from
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Figure 31. Time series of δDM(t) for J1909-3744 from the NANOGrav 15-yr data set (G. Agazie et al. 2023b). Black points
show departure of DM from a constant value; red points show departure from a linear fit to the black points.
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Figure 32. DM Time series and structure function for the MSP J1939+2134 (B1937+21) from the 15-yr NANOGrav data
release (G. Agazie et al. 2023b). Top: DM(t) before (black) and after (red) removing a straight line. Middle: Structure
function before (black) and after (red) removing a straight line. The solid green line is the Kolmogorov inertial subrange scaling
DDM ∝ τ5/3. Bottom: The number of counts in each lag bin from the irregularly sampled DM.

only a power-law process. The DM structure function shown in the middle panel has a slope consistent with the

τ5/3 scaling expected for a Kolmogorov process. This result is corroborated by the SF calculated from a longer time

series obtained by combining earlier measurements of DM(t) M. Vivekanand (2020, and references therein) with the

NANOGrav 15-yr data. Fig. 33 shows the resulting SF along with curves indicating the 5/3 scaling law for Kolmogorov

fluctuations and a curve for a square-law scaling. The noise floor dominates the SF at lags ≲ 30 days and for larger

lags the SF appears consistent with the Kolmogorov scaling. The expected scaling using the measured scintillation
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Figure 33. Structure function of DM for the MSP J1939+2134 (B1937+21) for a 37 yr data set obtained by combining the
15-yr NANOGrav DM time series (G. Agazie et al. 2023b) with the 31-yr time series from M. Vivekanand (2020, and references
therein). Where there was overlap, the NANOGrav time series was used. The DM SF is shown before (red points) and after
(green points) removing a straight line fit to DM(t). Points at lags ≲ 1 month are dominated by additive measurement errors
in DM that produce a flat component to the SF. Black solid lines show the SF expected from a Kolmogorov medium with
different outer scales lo, as indicated. These lines scale as δt5/3 for intermediate lags between ∼ 1/3 to 20 yr and saturate at
lags ≳ lo/veff . The black circle at τ ∼ 300 s indicates the characteristic DISS timescale and the implied DM SF calculated from
Eq. 10.7. The dashed line shows the square-law scaling that is clearly inconsistent with the measured values.

time ∆td ≃ 3 to 5 min at 1.5 GHz is consistent with the asymptotic part of the SF. This implies that length scales in

the ISM along this LoS span a range of at least 20 yr/4 min = 6.4 orders of magnitude (∼ 104 km to 200 au using an

effective velocity of 50 km s−1).

10.2. Angular deviations and broadening

Radio interferometric imaging has provided scattering diameter θd measurements useful for establishing the index β,

the inner scale li, and anisotropies of the wavenumber spectrum (S. R. Spangler & J. M. Cordes 1988; S. R. Spangler

& C. R. Gwinn 1990; J. M. Moran et al. 1990; L. A. Molnar et al. 1995; T. J. W. Lazio 2004) and the outer scale (e.g.

A. H. Minter & S. R. Spangler 1996). Interferometric measurements of the visibility function in the Dϕ ∝ bβ−2 regime

have yielded constraints on β for (relatively) weakly scattered objects while heavily scattered objects that also sample

the Dϕ ∝ b2 regime(c.f. Eq. 9.5) have yielded estimates of the inner scale.

Referring to Table 4, for scattering angles ≃ 1 mas and path lengths ∼ 1 kpc at 1 GHz, the corresponding diffraction

scale ld ≃ 104 km and refraction scale lr ≃ 1 au, compared to inner scales estimated as ∼ 50 to 1000 km.

10.3. Scintillations: dynamic spectrum and secondary spectrum

Diffractive scintillations are manifested in the dynamic spectrum (DS), the radio spectrum measured at multiple times

t,

I(ν, t) = ⟨|ε̃(ν, t)|2⟩T , (10.8)
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where ε̃(ν, t) is the Fourier transform of the baseband voltage with bandwidth B for a data block of duration T = Nδt

centered on t, where N is the FFT length and δt = B−1 is the sample interval28. For total intensity data (i.e. Stokes

I), the DS would be the sum of the individual DS for each of two polarization channels.

With phase resolved spectroscopy (PRS), the DS is formed by averaging (after dedispersion) over an on-pulse window

and over multiple pulses corresponding to elapsed times T of order seconds but shorter than the scintillation time ∆td.

A corresponding off-pulse average ⟨Ioff(ν)⟩ is used to remove the receiver bandpass shape by subtracting and dividing

it from the on-pulse spectrum. This approach maximizes the S/N of the scintillation signal before further analysis of

the DS. An alternative approach for computing the DS, cyclic spectroscopy, is discussed below.

The two-dimensional ACF of the DS is frequently used to determine scintillation parameters,

ΓI(δν, δt) = ⟨I(ν, t)I(ν + δν, t+ δt)⟩ = ⟨|ε̃(ν, t)|2|ε̃(ν + δν, t+ δt)|2⟩ = ⟨I⟩2 + |Γε̃(δν, δt)|2, (10.9)

where the last equality follows for any stochastic process ε̃ having complex Gaussian statistics, including the scintillation

modulated pulsar signal in the strong scintillation regime (e.g. B. J. Rickett 1990). Such statistics are expected because

scintillations typically result from the superposition of a large number of propagation paths (Central Limit Theorem).

J. L. Codona et al. (1986) have pointed out that departures from Gaussian statistics can be caused by strong refraction

from large scales in the medium along a single or a small number of paths. The autocovariance is the ACF of the

fluctuating intensity, ΓδI(δν, δt) = |Γε(δν, δt)|2. The scintillation feature in the 2D ACF often is slanted in the δν - δt

lag domain, an effect caused by refraction and characterized as a drift rate dν/dt.

Assuming ΓδI(δν, δt) is normalized to unit maximum, the scintillation bandwidth ∆νd is the HWHM of the 1D slice

ΓδI(∆νd, 0) = 1/2 and the scintillation time ∆td is the HWe of ΓδI(0,∆td) = e−1. Usage of these particular measures

is motivated by a thin screen with a square-law phase structure function, which yields ΓδI(∆νd, 0) = [1 + δν/∆νd)2]−1

for the slice along the δν axis and ΓδI(0,∆td) = exp(−δt/∆td) along the time-lag axis. Though a square-law SF is

evidently not a viable form for the ISM, it is analytically tractable and provides functional forms that are useful for

quantifying measurements. A square-law structure function strictly requires a β = 4 wavenumber spectrum, which

Figure 34. Scintillation diagnostics for B1937+21 from Arecibo observations conducted in 2012 and processed using cyclic
spectroscopy. The dynamic spectrum (relative linear intensity as a function of frequency and time) is shown in the middle panel
at a time resolution of 28 s and a frequency resolution of 0.61 MHz. The left panel shows the secondary spectrum (2D FFT
of the dynamic spectrum), including a 1D average over fringe rates > 10 µs. The right panel shows the 2D autocorrelation
function (ACF) with three evenly spaced contours between 0.2 and 1, along with 1D slices through the ACF at zero lag along
the frequency and time axes. The ACF yields a decorrelation bandwidth and timescale of about 0.4 MHz and 3 minutes,
respectively, at 1360 MHz. Data courtesy of Tim Dolch and Jacob Turner (see Turner et al. 2023).

28 We use the Nyquist criterion for complex baseband data as opposed to the criterion δt = (2B)−1 for real data.
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corresponds to a medium comprising step functions (H. C. Lambert & B. J. Rickett 2000) that has mathematically

divergent variance. However, inspection of Eq. 9.5 indicates the SF is square-law in form for spatial lags ≪ inner scale,

a regime that dominates the measurements of heavily scattered sources.

The Fourier transform of the 2D ACF (equivalent to the squared magnitude of the 2D Fourier transform of the DS by

the Wiener-Khinchin theorem), though containing the same information, has proven to be enormously useful for ISM

studies. Using F2D to denote 2D transform, this secondary spectrum (SS) is

S2(fν , fts) = |F2D{I(fν , ft)}|2 = |F2D{|ε̃(ν, t)|2}|2, (10.10)

with variables fν and ft that are conjugate to ν and t with units of time and frequency, respectively. The second

equality in Eq. 10.10 shows by inspection that the SS is a fourth moment of the wavefield ε. Often fν is referred to

as a “delay,” a term we avoid because it may be misinterpreted as the delay of a pulse imposed by ISS rather than as

(effectively) the lag of a correlation function.

The SS often displays remarkable scintillation arcs (D. R. Stinebring et al. 2001), parabolic features corresponding to

discrete scattering screens along the LoS of interest for ISM studies. It is also used for assessing delays from multipath

propagation that contribute to ToA stochasticity (e.g. D. A. Hemberger & D. R. Stinebring 2008). The SS as defined

excludes phase information contained in the Fourier transform F2D{I(fν , ft)}; other authors have exploited phase

information for ISM studies (W. F. Brisken et al. 2010; D. Simard et al. 2019; D. Baker et al. 2023; H. Zhu et al. 2023).

Fig. 34 shows examples of these tools for the MSP J1939+2134 (B1937+21), including the DS (center), the 2D ACF

and 1D slices through it (right-hand panel), and the SS in the left panel. The central feature of the 2D ACF is slightly

slanted due to refraction from scales larger than those that scatter the radiation.
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Figure 35. Left: Simulated ray paths for an extended medium with density variations conforming to a Kolmogorov wavenumber
spectrum (similar to J. M. Cordes et al. 2016), with high frequency ray paths in black and low frequency ray paths in red.
Right: Pulse broadening functions corresponding to the ray paths shown in the left panel.

10.4. Pulse broadening

Scattered pulses from pulsars are the convolution of a pulse broadening function (PBF) with the “intrinsic” pulse

shape emitted by the pulsar. This follows from the linearity of propagation through the ISM. Propagation effects

include dispersion and angular deflections from refraction and diffraction. In the ISM context, the PBF is usually

defined in terms of the geometrical path length differences between the multiple propagation paths in a ray bundle

that contribute to the measured wave field in the observation plane. It therefore does not include any differential

dispersion across the bundle of ray paths because it is a small effect that can be considered separately (see section on

frequency dependence of DM).
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The PBF quantifies the differences in arrival times for pulses propagating along different ray paths. For most pulsar

observations (as well as those for fast radio bursts), the LoS geometry may be considered invariant over minute to

several hour time spans, depending on the path length through the ISM and on the observation frequency. If scattering

occurs primarily in a thin screen, the received angles of arrival are directly related to time delays; however distributed

scattering that leads to random walk ray paths does not have this simple property. Figure 35 shows (left panel)

simulated rays propagating through a distributed medium for two frequencies, demonstrating the strong frequency

dependence. The accompanying PBFs are shown in the right panel, showing once again their envelope times noise-

process forms and strong frequency dependence.

When scattering is strong, the PBF comprises a large number of individual propagation paths, so the net wavefield

becomes a complex Gaussian process modulated by an envelope function related to the size of the raypath bundle. The

intensity PBF, calculated as the squared magnitude, then comprises a stochastic process with exponential statistics

(χ2
2) modulated by a function that is the ensemble average intensity PBF.

An impulsive signal incident on a phase changing medium yields an impulse response in the measured wavefield

ε(t, t) = h(t, t) which we call the field PBF to distinguish it from the intensity PBF, pd(t) ≡ |h(t)|2 (for which we drop

the t dependence, making it implicit). PBFs are calculated most often from the geometrical path length differences

along the set of propagation paths that instantaneously reach the observer, which is most easily done for thin screens

and for random walks through extended media. The PBFs can also be calculated using the Fresnel-Kirchhoff integral,

which includes dispersion delays along with geometrical delays.

The field PBF is stochastic, varying rapidly in time t (e.g. ns to s) but slowly in t (s to hr). The field PBF is constant

for times shorter than the DISS time scale, t≪ ∆td. The PBF example given earlier for a thin screen in Fig. 17 shows

the rapid fluctuations of pd(t) with corresponding frequency structure in the spectrum also shown (lower frame). An

ensemble average (corresponding to averaging the PBF over many scintillation time scales) yields a smooth PBF with

a shape determined by properties of the medium (e.g. β and inner scale), while the spectrum averages to a constant

value. To complement the thin screen case shown in Fig. 35, we show ray traces for a thick medium and PBFs for two

frequencies to illustrate their strong frequency dependence along with their temporal stochasticity.

The field and intensity PBF are related to frequency-domain quantities according to the flow diagram,

Field PBF h(t)
FT

⇐⇒ h̃(ν)

| · · · |2
y y ACF

PBF pd(t) = |h(t)|2 FT

⇐⇒

∫
dν Γh̃(δν, ν) ,

(10.11)

where the frequency-domain correlation function is

Γh̃(δν, ν) = h̃(ν+)h̃∗(ν−), ν± ≡ ν ± δν/2. (10.12)

The quantities in each row of Eq. 10.11 are related by a two-way Fourier transform while vertical operations are

irreversible: the squared magnitude in the first column and an autocorrelation function in the second column. Recall

these are all bandlimited, baseband quantities corresponding to an RF center frequency ν0 and bandwidth B ≪ ν0.

The scintillation spectrum is H(ν) ∝ |h̃(ν)|2 = Γh̃(0, ν) is the primary quantity of interest for ISM studies and is

the essential part of the DS in Eq. 10.8. Characterization of frequency structure in H(ν) is a key element in ToA

corrections for scattering mitigation (discussed later).

Neither h(t) nor pd(t) or their Fourier transforms are known a priori and they are not directly measurable. The

field PBF is manifested through the convolution of h(t) with the emitted pulsar signal and various degrees of time

averaging; some of its properties are accessible through model fitting of pulse shapes and through frequency-domain

analyses (next section).
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The field PBF has the form h(t) = ah(t)mh(t), similar to the amplitude modulated noise form for the emitted signal

in Eq. 5.14. The PBF factors ah and mh differ fundamentally from those for emission. The amplitude ah is stable over

long periods of time (> days), varying on a refraction time scale, but is strongly frequency dependent. By contrast,

amplitude variation for emission varies on pulse-period time scales (≲ seconds) but varies slowly with frequency. The

PBF noise mh is stable over a DISS time scale (seconds to hours) and is correlated over a DISS bandwidth. By contrast

emission noise decorrelates over emission time scales equal to the inverse radio frequency, ν−1 ∼ ns.

The PBF noise process and the frequency structure of intensity scintillations are two sides of the same coin. Convolution

of the PBF with emitted pulses yields small TOA variations for low-DM pulsars at ∼GHz frequencies. Generally,

the instantaneous PBF is inaccessible to measurement (with rare exceptions discussed later) so it is not possible to

deconvolve the PBF as a means for reducing ToA errors. However some degree of correction is feasible by characterizing

scintillation frequency structure and how it changes with time, as discussed in detail in § 18.5.

Scattered pulse shape and scintillation frequency structure: The measured wavefield ε(t) is the convolution (using

subscript e to denote emitted wavefield),

ε(t) = εe(t) ∗ h(t) = [a(t)m(t)] ∗ [ah(t)mh(t)]. (10.13)

Time averaging a large number of pulses with h(t) constant (i.e. over a span ≪ scintillation time) yields a measured

pulse

I(t) ≃ Ie(t) ∗ |h(t)|2 ≡ Ie(t) ∗ pd(t). (10.14)

where pd(t) has a noisy form as in Fig. 17 (top panel) and Fig. 35 (right panel). Further averaging over many scintillation

times then yields a scattered pulse profile I(t) = Ie(t) ∗ pd(t) like those for pulsar J1644-4559 in Fig. 19. Determining

the scattering time τ and timing delays from scattering requires model fitting to I(t).

Accessing scattering information is more straightforward in the frequency domain. Fourier transforming Eq. 10.13

yields

ε̃(ν) = [ã(ν) ∗ m̃(ν)] × h̃(ν). (10.15)

The factor in square brackets yields frequency structure with a characteristic scale ∼ W−1
a equal to the reciprocal of

the width Wa of a(t). This structure is fully modulated (unity modulation index) in the strong scintillation regime that

usually applies for ν ≲ 5 GHz. The average of the squared magnitude I(ν) = |ε̃(ν)|2 over Np ≫ 1 pulses converges to a

constant with reduced modulation index mI ≃ N−1
p . This yields the scintillation spectrum in isolation, I(ν) ∝ |h̃(ν)|2,

which can be analyzed to determine the characteristic frequency of the intensity scintillations, i.e. the scintillation

bandwidth ∆νd.

The pulse broadening time τ is obtained by either pulse-shape modeling or via a frequency structure analysis. Its

importance for ToA correction is discussed later. Here we briefly present its role for modeling the Galactic structure

of electron density variations and to forecast pulsar timing precision (and for studies of FRBs). Several methods are

used to estimate τ :

1. Model fitting of average profiles as an intrinsic shape Ie(t) convolved with a PBF pd(t) (e.g. M. Geyer et al.

2017);

2. Deconvolving average profiles using a template bank of candidate PBFs and the CLEAN algorithm (e.g. N. D. R.

Bhat et al. 2003, 2004; J. Tsai et al. 2017; F. Kirsten et al. 2019; O. Young & M. T. Lam 2024);

3. Inverting scintillation bandwidth (∆νd) determinations using Eq. 9.10; and

4. Using cyclic spectroscopy to obtain higher resolution dynamic spectra and estimate the PBF and characterize

its width (P. B. Demorest 2011; M. A. Walker et al. 2013; N. Palliyaguru et al. 2015; T. Dolch et al. 2021; J. E.

Turner et al. 2023).

Here we present a brief analysis of a sample of τ values obtained using the first three methods. The intent here is

to illustrate the variation of the scattering time with DM and show the range of corresponding scattering measures.

Later we discuss how constraints on the PBF and τ can be used to correct ToAs for scattering delays.
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Figure 36. Scattering from known pulsars. Left: scattering time (τ) in µs at 1 GHz vs. DM for Galactic pulsars (including
canonical and MSPs) with scattering reported in the literature. Measurements were scaled to 1 GHz assuming τ ∝ ν−4.4.
PTA pulsars are highlighted in green. The solid blue line and shaded blue region show the best-fit empirical relation between
τ and DM, given by the equation shown. For pulsars with multiple published scattering measurements, the scattering times
were averaged and the error bars show the standard deviation of the measurements. Right: Scattering measures vs. dispersion
measures. SM values are estimated from pulse broadening times and scintillation bandwidths (see Table 4, assuming β = 11/3).
Downward arrows (red) indicate upper limits, black points represent individual measurements, while those with error bars
indicate the range of values for a specific pulsar (not the error on the mean of those values). The blue lines and band indicate
the mean and ±σlog τ range of SM calculated from the τ(DM) relation in Eq. 10.16. The scatter about the mean fit arises from
the irregular strength and distribution of scattering regions in the ISM.

It is well known that τ correlates with DM albeit with significant scatter. Figure 36 shows measurements of τ scaled

to 1 GHz along with a fit using the function τ̂(DM) = A×DMa(1 +B×DMb) (R. Ramachandran et al. 1997). Fitting

to log τ yields

τ̂(DM) = 1.9 × 10−7 ms × DM1.5(1 + 3.55 × 10−5DM3) (10.16)

with scatter σlog10 τ = 0.76 (J. M. Cordes et al. 2022). The plotted measurements include forty-three PTA pulsars with

published scattering measurements. Most of these MSPs have τ < 1 µs because they are chosen to have small DMs,

which often goes hand in hand with being closer to the observer and brighter. There are a few notable exceptions,

such as J1643−1224 with τ = 42 µs, an almost 100% excess from the value expected from the τ −DM relation (1 µs).

This pulsar lies behind the HII region Sh 2 − 27 that contributes 90% of its total DM (S. K. Ocker et al. 2020), and

which likely also dominates τ (G. Mall et al. 2022). J1903+0327 has the highest DM and τ of any pulsar timed by

current PTAs, but unlike J1643−1224, it is entirely consistent with the τ − DM relation. The pulse broadening times

and model fit are used to evaluate scattering measures by inverting Expression 9 in Table 4, as shown in the right-hand

panel of Figure 36.

Notable features of the τ − DM relation in Fig. 36 include: (1) the approximate factor of ten variation in τ for fixed

DM; and (2) the large change in slope of the mean relation from τ ∝ DM1.5 to DM4.5 at DM ∼ 50 pc cm−3. The large

scatter in τ includes estimation errors from pulse-fitting methodology and from variations in geometrical leveraging: a

region midway along the LoS produces the largest scattering time. The increase in slope requires a change in density

variations as quantified by a fluctuation parameter that characterizes small cloudlets having a volume filling factor f

and internal density fluctuations with wavenumber spectral index β and outer scale lo,

Fc ≡
Var(ne)/ne

2

flβ−3
o

β=11/3≃ ζϵ2

fl
2/3
o

(10.17)
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where ζ and ϵ are dimensionless parameters corresponding to cloud-to-cloud and internal density variations, respectively

(e.g. J. M. Cordes et al. 1991). There is a factor of ∼ 20 difference in Fc between the local ISM and the inner Galaxy

in the NE2001 electron density model that can account for the slope increase of the τ − DM relation. These results

underscore the value of pulsars in the solar vicinity that will show much less scattering-induced ToA variations than

more distant objects. Though scattering delays can be removed to some extent, methods for doing so are not yet

sufficient to make distant pulsars useful for the most demanding timing applications (e.g. nanohertz GW detection).

10.5. Cyclic spectrum (field correlation function)

The cyclic spectrum (CS) is a frequency-domain correlation function that exploits the periodic aspect of a signal

(W. A. Gardner 1991; J. Antoni 2007). The primary utility of the CS is that it can provide dynamic spectra with

resolved scintillations in cases where scintles are narrow in frequency. Second is its potential for estimating the full

impulse response h(t) contemporaneously with arrival time data, which, in principle, can aid efforts to correct ToAs

for multipath propagation delays (e.g. P. B. Demorest 2011; M. A. Walker et al. 2013; N. Palliyaguru et al. 2015; T.

Dolch et al. 2021; J. E. Turner et al. 2023). Addtionally, the fine frequency resolution used to resolved scintles enables

fine-frequency RFI mitigation as a consequence.

The CS of the pulsar signal, Γε̃(δν, ν), is the frequency domain correlation function of the baseband field (analogous

to Γh̃(δν, ν) for the field PBF),

Γε̃(δν, ν) ≡ ε̃(ν+)ε̃ ∗(ν−) = Γh̃(δν, ν)

∫∫
dt1dt2 a(t1)a(t2)m(t1)m∗(t2)e2πi(ν+t1−ν−t2). (10.18)

The basis for the CS is a finite FT calculated over a time block T longer than a pulse period but shorter than the

DISS time scale, i.e. P ≪ T ≪ ∆td. This provides better frequency resolution than PRS for a time block in which the

scintillation spectrum H(ν) is essentially constant. Note also that because the scintillation bandwidth ∆νd is strongly

frequency dependent, scaling approximatley as ν−4, the CS analysis needs to be done over bandwidths narrow enough

so that ∆νd varies only by a tolerable amount. Including a radiometer noise term, the CS for a single FT is

Γε̃(δν, ν) = ε̃(ν+)ε̃ ∗(ν−) = Γh̃(δν, ν)Γε̃i(δν, ν) + Γñ(δν, ν) + [h̃(ν+)ε̃i(ν+)ñ∗
ν− + h̃(ν−)ε̃i(ν−)∗ñ(ν+)], (10.19)

where cross terms in square brackets between ñ and ε̃i average to zero. However, they contribute significantly to the

variance of CS estimates considered later.

To simplify the correlation function we exploit the constancy of Γh̃ over the time block and average over the rapid

decorrelation of the noise process m. We use an ensemble average for the noise while letting Γh̃ be constant29. The

noise correlation ⟨m(t1)m∗(t2)⟩ = σ2
m∆(t2− t1) vanishes for time differences |t1− t2| larger than the inverse bandwidth

(e.g. larger than 0.01 to 1µs) so the amplitude product a(t1)a(t2) ≃ a2(t1) ≡ A(t1). Using the FTs ∆̃ and Ã for ∆

and A, respectively, yields

⟨Γε̃(δν, ν)⟩P≪T≪∆td
≃ σ2

mÃ(δν)∆̃(ν)Γh̃(δν, ν) +Wnσ
2
nsinc(δνT )∆̃(ν) (10.20)

where sinc(x) ≡ (sinπx)/πx. The second (noise) term has a width 1/T vs. δν but extends over the full frequency

band vs. ν.

The cyclic aspect of Γε̃ comes into play when the FT is calculated over a time T ≫ P that spans Np periods with the

(assumed) same shape A0(t),

A(t) =

Np−1∑
j=0

ajA0(t− jP ). (10.21)

A strictly periodic train of Np ≫ 1 identical pulse shapes A0(t) with A0(0) = 1 and an average amplitude Sν,pk has

an FT,

Ã(δν) ≃ NpWASν,pkÃn(δν) × |sincd(δνP,Np)|, (10.22)

29 The noise decorrelates on sub-µs time scales for >MHz bandwidths while h(t), if dominated by DISS, decorrelates over minutes to an
hour for nearby pulsars used in PTAs. Integration times of > 1 s yield time-bandwidth products > 106 for the noise, or a fractional
error in the correlation function ≲ 1%.
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where Ãn(δν) = Ã0(δν)/Ã0(0) is normalized to unit maximum and its effective width is WA ≡ Ã0(0). The Dirichlet

sinc function, sincd(x,N) = sin(Nπx)/N sin(πx), yields peaks at discrete frequencies δνk = k/P with k extending to

kmax ∼ P/WA, the reciprocal of the pulse duty cycle.

The number of cyclic frequencies where the amplitude of Γε̃ is significant is of order the reciprocal of the pulse duty

cycle, Nk ∼ P/WA. For millisecond periods Pms the cyclic frequencies δνk = (k/Pms) kHz are much smaller than the

DISS bandwidths for low-DM pulsars observed at 1.5 GHz. This means that for cyclic frequencies with k ≪ Nk the

scintillation CS Γh̃(δνk, ν) ≃ Γh̃(0, ν) ≡ |h̃(ν)|2, which is the standard scintillation spectrum for the time block in

question (c.f. Eq. 10.8). The frequency resolution is δν = 1/T ≪ 1/WA ≪ 1/P ≪ ∆νd.

We rewrite the CS in Eq. 10.20 (after dropping the subscript on the averaging brackets) as

⟨Γε̃(δνk, ν)⟩ = (TFT/B) ⟨Sν⟩ϕ b̃(ν)

[
Ãn(δνk)Γh̃(δνk, ν) +

sinc δνkT

(S/N)ϕ

]
, (10.23)
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Figure 37. Frequency domain correlation functions (cyclic spectra) of four quantities. They comprise averages over 100
realizations of the pulsar signal while keeping fixed a single realization of the scintillation modulation . The plotted quantities
are log10 of the absolute values of the correlation function normalized to unit maximum. The horizontal axis corresponds to
radio frequency (in bins) and the vertical axis is the frequency lag δνk = k/P corresponding to harmonics in the CS. Each
frame is normalized so that the mean across the δν0 = 1. Top left: CS for the intrinsic pulsar signal ε̃i modeled as amplitude
modulated noise. Top right: CS for the scintillation modulation h̃. Bottom left: CS for the modulated pulsar signal h̃ ∗ ε̃i.
Bottom right: CS for the modulated signal + radiometer noise. The case shown here is for S/N ≡ ⟨Sν⟩ϕ/Ssys = 1, where ⟨Sν⟩ϕ
is the period averaged flux density and Ssys = 3 Jy is the SEFD for a DSA-2000 class telescope.
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where the bandpass factor is b̃(ν) = ∆̃(ν)/∆̃(0) = B∆̃(ν). Also, ⟨Sν⟩ϕ ≃ (WA/P )Sν,pk is the period averaged flux

density (as usually reported for pulsars), b̃(ν) is the receiver bandpass function with width B, and sincx ≡ (sinπx)/πx.

The signal to noise ratio is (S/N)ϕ ≡ ⟨Sν⟩ϕ/Ssys where Ssys = Tsys/G is the system effective flux density (SEFD) for

a telescope with gain G. The first term in square brackets is from the pulsar signal while the second term is from

additive noise reduced by the (S/N)ϕ
−1

factor. Though (S/N)ϕ ≪ 1 for most pulsars, the second term is important

only for k = 0.

Inspection of Eq. 10.23 shows that the scintillation CS Γh̃ with full phase information can be extracted in cases where

the signal-to-noise ratio is large and if the intrinsic pulse shape Ã0(t) (or equivalently Ãn) is known. The latter

condition is not usually the case.

When only the scintillation spectrum is wanted (i.e. without phase information) integration over pulse phases where

the pulse is strong can be done as follows. The inverse transform of Γε̃(δνk, ν) with respect to δνk yields the phase

resolved CS or ‘profile spectrum’ with a time argument replacing the δν argument,

⟨Γε̃(t, ν)⟩ ∝ ⟨Sν⟩ϕ b̃(ν)An(t) ∗ Γh̃(t, ν), (10.24)

where a constant term from the sinc function has been excluded. Integration over the time window comprising the

pulse then yields the scintillation spectrum.

Figure 37 shows cyclic spectra Γx(δν, ν) for four quantities: x = (pulsar signal, scintillation modulation, scintillated

pulsar signal, and scintillated signal + noise). The signal to noise ratio of the voltage signal is unity, defined as

⟨Sν⟩ϕ/Ssys. The plotted quantities are sums over 100 realizations and are evaluated at harmonics δνk = k/P of the

pulsar period P . Features of the four panels include:

• Top left: The CS of the intrinsic signal is flat across frequency but rolls over vs. δνk. The number of significant

harmonics is approximately the reciprocal of the duty cycle, P/W ∼ 15.

• Top right: The CS of the scintillation modulation is nearly constant across harmonics but shows the 100%

modulations expected vs. frequency.

• Bottom left: the CS of the scintillated pulsar signal shows the frequency structure and rolloff vs. harmonic

number.

• Bottom right: additive noise reduces the significance of the frequency structure. This can be compensated for by

summing over more realizations. In practice the number of summed individual CS is limited by the scintillation
time scale. Most pulsars will have S/N smaller than the unity value used in the simulation.

11. A GALLERY OF PULSE BROADENING FUNCTIONS

Reasons for considering the variety of PBFs are twofold. First, PBFs provide unique information about the ISM, in

particular the Galactic distribution of electron density variations and their wavenumber spectrum. Second, optimal

timing of pulsars requires removal of chromatic interstellar delays if the primary goal is to obtain achromatic ToAs for

the study of pulsar orbits, the neutron star equation of state, and long-wavelength gravitational waves. The second is

of course intertwined with the first because proper removal of chromatic delays requires a sufficient understanding of

the ISM, viz. how propagation effects on arrival times scale with frequency.

In this section we present a gallery of PBFs for selected media and geometries to illustrate their variety and the

complexity of ToA correction for chromatic effects.

Most of the issues related to PBF envelope variations can be illustrated using a thin screen geometry that allows

an analytical treatment for many quantities. Quantitative analyses also require consideration of thick media that

generally depend on numerical integrations.
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11.1. Thin-screen geometry

Here we consider scattered images of point sources I(θ) and PBFs pd(t) as ‘envelope’ quantities that exclude stochastic

noise (speckles and scintles) already discussed. The PBF is the sum of all geometric delays over the scattered image

of a point source (J. M. Cordes & T. J. W. Lazio 2001a),

pd(t) =

∫
dθ I(θ)δ(t− d ′|θ|2/2c). (11.1)

No plasma delays are included because the screens are considered infinitesimally thin and the increments in DM

corresponding to the phase change at each position along the screen are small. Simplification of the integral depends

on the shape of the image and on any offset from the direct LoS caused by refraction.

Most expressions in the literature consider Gaussian images with no offset from the direct propagation path. For

example, a symmetric Gaussian image with RMS angle σ along each axis gives the often used exponential PBF,

pd(t) = τ−1 exp(−t/τ)Θ(t), where Θ(t) is the Heaviside function and τ = d ′σ2/c. Fig. 38 shows the results from

application of Eq. 11.1 and how the e−1 points in the image and the PBF are related. A Gaussian image is expected

if the phase structure function has a square-law form, Dϕ(b) ∝ b2, which is at best only approximated by a screen

comprising monoscale density irregularities (e.g. W. M. Cronyn 1970; J. M. Sutton 1971; V. E. Ostashov & V. I.

Shishov 1978) or a power-law distribution of density scales with β → 4.

While the exponential PBF is convenient to use, e.g. for coarse estimation of scattering times τ by model fitting

scattered pulse shapes, it is overly simplistic for both ISM and pulsar timing applications. The reasons for this are

that (1) Scattering is generally associated with multiple screens and extended media, rather than single thin screens.

While scintillation arcs indicate the prominence of thin screens along some lines of sight, they are often multiple rather

than single, even for nearby pulsars (J. W. McKee et al. 2022; S. K. Ocker et al. 2024; D. J. Reardon et al. 2025). More

distant pulsars encounter even more scattering regions.30 Thick media (or an ensemble of thin screens) yield PBFs

with longer rise times than the sharp rise of a one-sided exponential function. (2) Direct imaging of scattered pulsars

(and other objects, such as active galactic nuclei and interstellar masers) yield elliptical images in some cases, which

cause the PBF to differ from a simple exponential (e.g. K. M. Desai & A. L. Fey 2001; G. C. Bower et al. 2014). Image

anisotropy is also evident in the detection of inverted “arclets” in pulsar secondary spectra (W. F. Brisken et al. 2010;

T. Sprenger et al. 2022; D. R. Stinebring et al. 2022). (3) PBFs from the ISM appear to deviate from an exponential

form (e.g. A. G. Lyne & D. J. Thorne 1975; B. Rickett et al. 2009); and (4) refraction-induced offsets of scattering

images alter the shapes of all PBFs, as shown below.

image2pbf  2022-08-14 15:46:22

Figure 38. Scattering from a thin screen that produces a circularly symmetric Gaussian image (left) and the corresponding
exponential PBF. Darker shading of the image indicates angles with higher probability. The white line indicates the 1/e point
in the image and in the PBF.

30 The relevance of extended media to more distant, high-DM pulsars is corroborated by scintillation arc measurements, which indicate
that scintillation arcs become less defined (and detectable) at higher DM, suggesting that arcs are “blurred” by the presence of multiple
screens along the LoS (D. R. Stinebring et al. 2022; R. A. Main et al. 2023).
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Figure 39. Pulse broadening functions for media with square-law structure functions (Gaussian scattered images). Left: PBFs
for slabs midway between source and observer with different fractional thickness ∆s for a square-law structure function. Time
is normalized by τ1, the e−1 time of the PBF for the thin screen case, which has only one eigenvalue. Finite thickness slabs have
multiple eigenvalues that yield PBFs equal to the n-fold convolution of one-sided exponential functions. Right: Time metrics of
PBFs for slabs midway between source and observer with different fractional thickness ∆s for a square-law structure function.

Scattering slabs of arbitrary thickness with density variations following a square-law structure function have PBFs

that are the n-fold convolution of one-sided exponential functions τ−1
n exp(−t/τn)Θ(t) where Θ(t) is the Heaviside

function (I. P. Williamson 1975). The e-folding times τn are the eigenvalues of the equation that describes diffusion

of rays through a slab. The number of significant eigenvalues depends on the slab’s thickness. For a thin screen, only

one eigenvalue is significant.

Example PBFs are shown in Fig. 39 for slabs centered midway along the LoS (s̄ = 1/2) with fractional thicknesses

∆s ranging from ≪ 1 to 1. The rise time and width of the PBFs increase with slab thickness, making it clear that

model fitting of pulses with the thin screen PBF will yield biased results for pulsars affected by thick-slab scattering.

Indeed N. D. R. Bhat et al. (2004) demonstrated with deconvolution of PBFs from measured pulse shapes that the

more rounded rise times of thick-slab PBFs were required for some pulsars.

The mean scattering time τ =
∑
n τn ≡

∫
dt tpd(t) is equivalent to calculating the mean time for the PBF treated as a

probability density function. We compare the mean time with the mode, median and 1/e time of the PBFs in Fig. 39.

While the mean and 1/e time are equal for a thin screen with a square-law density structure function, they diverge

with increasing slab thickness.

11.2. PBFs from thin and thick media with power-law (‘Kolmogorov like’) wavenumber spectra

Media with a power-law wavenumber spectrum spanning a broad range of scales produce non-Gaussian scattering

angle distributions and PBF envelopes that depart significantly from an exponential form. In addition, their shapes as

well as their 1/e scales are frequency dependent: thus PBFs are not self similar vs. radio frequency. V. E. Ostashov &

V. I. Shishov (1978) show for 2 < β < 4 and zero inner scale that the image scales asymptotically as I(θ) ∝ (θ/θd)−β

for θ/θd ≫ 1, where θd is the diffraction angle, and the corresponding asymptotic PBF is pd(t) ∝ (t/τ)−β/2 for t/τ ≫ 1

where τ = dθd
2/2c. As β → 4 from below, the PBF is exponential ∝ e−t/τ for small t ≲ 2τ ln(2/(4 − β)) but includes

a power-law component ∝ (t/τ)−β/2 for larger t. A finite inner scale yields a third PBF regime, an exponential decay

at very long times t ≳ τi where τi ∝ l−2
i can be many orders of magnitude larger than the 1/e PBF scale.

The three regimes are evident in the PBFs shown in Fig 40 (left panel). For a Kolmogorov spectrum (β = 11/3)

and other cases with β < 4, the PBF decays more slowly than an exponential (e.g. L. C. Lee & J. R. Jokipii 1975;

H. C. Lambert & B. J. Rickett 1999) and generally for large t ≳ τ , the PBF follows the t−β/2 scaling until it decays

exponentially from an inner scale. For β < 4, the mean scattering time ⟨t⟩ =
∫
dt t pd(t) diverges unless the inner scale

is finite.
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Figure 40. Thin screens with Kolmogorov density fluctuations (β = 11/3). Left: PBFs for an isotropic Kolmogorov spectrum
that illustrate the effects of a small or large inner scale li relative to the diffraction scale ld. The time axis is normalized by
the e−1 time scale τe. Scaling laws for the smallest inner scale (ζ = li/ld = 0.01) show three regimes: exponential ∝ e−t/τe ,
power-law ∝ t−β/2, and exponential ∝ e−t/τi at small, intermediate, and large times, respectively. For the largest inner scale,
the PBF shows only the exponential scaling that is close to that expected for a Gaussian-shaped scattered image. Right:
Cumulative integral showing the contribution to the mean scattering time from the tail of the PBF for different inner scales.
The curve for the exponential PBF is nearly indistinguishable from the ζ = 10 (large inner scale) case.

Moved here from later section. May need dovetailing with text here. Figure 40 (right panel) shows the

cumulative integral for the mean PBF delay⟨t⟩pd =
∫
dt t pd(t) for β = 11/3. With the PBFs scaled to the same 1/e

time scale, te, the various curves show that the contribution can be up to ten times larger than for an exponential

form. The large delays of long-tailed PBFs are quantified with the ratio Rt = ⟨t⟩pd⟩/τ of the average scattering time

⟨t⟩ to the 1/e time τe, as shown in Figure 41 vs. ζ = li/ld. This ratio is Rt ∼ 8 for a small inner scale ζ = 0.01 and

declines monotonically to Rt = 1, the value for an exponential PBF, as ζ increases. Also shown is the ratio σtp/⟨t⟩pd ,

which measures the spread in delays relative to the mean; it too is much larger for small ζ. For shallower density

spectra with 2 < β < 11/3, these ratios increase and tend to unity as β → 4.

As shown above, if the diffraction scale ld is comparable to or smaller than the inner scale, the PBF tends toward the

monoscale case with only an exponential decay. PBFs at high radio frequencies therefore will show a long power-law

tail while at low frequencies the PBF trend to the exponential. Empirical determinations of the shape of the PBF

or the scaling of the scattering time with frequency yield constraints on the inner scale of order 70 to 800 km (e.g.

N. D. R. Bhat et al. 2003; B. Rickett et al. 2009).

As with square-law media, the PBFs for thick Kolmogorov-like media have finite rise times related to the fact that

radiation is scattered multiple times along each propagation path. The asymptotic decay of the PBF ∝ t−β/2 is similar

to those of thin screen cases. Fig. 42 shows PBFs for different β and for different values of inner scale parametrized by

ζ = li/ld. The PBFs show a finite rise in contrast to the sharp rises seen from thin screen cases. Thick media require

numerical integration similar to the approaches in I. P. Williamson (1974); L. C. Lee & J. R. Jokipii (1975); V. E.

Ostashov & V. I. Shishov (1978); A. Ishimaru (1979) and H. C. Lambert & B. J. Rickett (1999); our implementation

is described elsewhere (JMC, book now in preparation).

11.3. Anisotropic scattering and refraction

Long tailed PBFs arise, as we have shown, from screens or extended media with isotropic density fluctuations and

small inner scales that produce circularly symmetric scattered images of point sources. Anisotropic media produce

images with elliptical contours and long-tailed PBFs. Refraction that distorts would-be circular images also yield

long-tailed PBFs, as we show here. These and previous cases indicate, therefore, that long-tailed PBFs are to be

expected generally.
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Asymmetric scattered images: For some lines of sight, scattering appears to be caused by anisotropic density irreg-

ularities as evidenced in the elliptical shapes of scattered images determined from VLBI and from the properties of

pulsar scintillations citations. An alternative cause is refractive distortion of scattered images that would otherwise

have circular contours. These two origins for anisotropies result from very different length scales of density variations

in the medium, small scales responsible for diffraction and large scales that underly refraction.

Anisotropies are most prominent for nearby pulsars or for distant pulsars that encounter a local region of enhanced

scattering, such as a supernova shock or HII region. It is justified for these cases to consider a thin screen and

computing PBFs for anisotropic screens involves a simple transform of the PBFs for isotropic cases.

The PBF for a screen that scatters anisotropically is, from Eq. 11.1,

pd(t) =
c

d ′

∫ 2π

0

dϕ I(
√

2ct/d ′ cosϕ,
√

2ct/d ′ sinϕ). (11.2)

A scattered image with elliptical contours can be written in terms of a symmetric image I iso by replacing (θx, θy)

with (R−1/2θx, R
1/2θy) using an axial ratio R > 1 to obtain I(θx, θy) = I(iso)(θx/R

1/2, θyR
1/2). This choice aligns

the contours with the coordinate axes, with no loss of generality for the resulting PBF. The PBF in turn becomes an

integral over azimuthal angle of the PBF from isotropic irregularities,

pd(t) =

∫ 2π

0

dϕ p
(iso)
d

[√
2ct/d ′

(
R−1 cos2 ϕ+R sin2 ϕ

)]
. (11.3)

The same transformation applies, in principle, to PBFs from extended media but requires the unphysical assumption

that irregularities in the medium have the same axial ratio and orientation along the entire LoS.

Example of elliptical Gaussian scattered images: Applying Eq. 11.3 to the exponential PBF from a circular Gaussian

image, we obtain

pd(t;R) = τ−1
1 e−[(R2+1)/2R](t/τ1)I0[((R2 − 1)/2R)(t/τ1)], (11.4)

where I0(x) is the modified Bessel function and τ1 is the mean scattering time for R = 1 (the exponential PBF case).

Note that the PBF is unchanged under a substitution R → R−1. Fig. 43 (left panel) shows examples for five axial

ratios and where the image size has been held fixed along one of the axes. In these cases, the solid angle of the image

scales as R−1, causing the PBF to become more concentrated at the origin. In the limit of R ≫ 1, the PBF has a
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Figure 41. Thin screen scattering time metrics, ⟨tp⟩/τ and σtp/⟨tp⟩, vs. the inner scale ratio ζ = li/ld for a Kolmogorov
medium (β = 11/3) in the inertial subrange scaling regime. For ζ ≫ 1, the PBF is a one sided exponential and the two ratios
asymptote to unity. The two lines are labeled with their logarithmic slopes for small values of ζ.
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as a function of dimensionless inner scale ζ = li/ld for β = 11/3 (right).
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Figure 43. Left: PBFs for scattered images with different axial ratios, R, but calculated from the PBF for a circularly
symmetric image, as described in the text. All PBFs are normalized to unit amplitude at t = 0. The time axis is defined so
that t = 1 for the e−1 value of the R = 1 case. Right: PBFs for a symmetric Gaussian image offset from the direct line of sight
by an angle θ in units of σ, the e−1/2 width of the Gaussian image. All PBFs are normalized to unit amplitude at t = 0. The
time axis is defined so that t = 1 for the e−1 value of the θ = 0 case.

characteristic width τ = Rτ1 and shape, pd(t) = (πτt)−1/2e−t/τ , that differs significantly from the purely exponential

form for R = 1. For these PBFs, the ratio of the RMS to mean time delay is

σt
⟨t⟩ =

√
2(R2 +R−2)1/2

R+R−1
, (11.5)

is unity for a symmetric Gaussian image (R = 1) but increases to
√

2 for R≫ 1 or R≪ 1 (by inspection).

PBFs from anisotropies and image offsets: Generally, scattered images are asymmetric in shape and offset from the

direct line of sight due to refraction. Asymmetries can arise from asymmetric diffraction combined with refraction,

which causes both convergence and shear of the image (described below) or they can be caused be refraction alone or

diffraction alone.

A screen with only a phase gradient shifts the scattered image and increases propagation delays but does not alter the

surface brightness. For a shift θ = (θx, θy), the PBF is given by Eq. 11.2 with the arguments of the image replaced by
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2ct/d ′ cosϕ− θx and

√
2ct/d ′ sinϕ− θy). A shifted circularly-symmetric Gaussian image yields, with τ ≡ d ′σ2/c,

pd(t) = e−θ
2
/2σ2

I0(θ
√
t/τ/σ) ×

[
τ−1e−t/τΘ(t)

]
, (11.6)

where θ
2

= θ
2

x + θ
2

y, I0 is the modified Bessel function of the first kind and the square brackets designate the PBF for

a centered image (θ = 0). Examples are shown in Figure 43 (right panel), which demonstrate that offsets make the

PBF wider and non-monotonic.

Next we show results where asymmetries and offsets are both caused by refraction from screens with power-law density

wavenumber spectra. For these cases we simulate only refraction from the screen and let it modify symmetric Gaussian

images. For weak refraction that does not induce any ray crossing, we use a geometric optics approach based on the

Fresnel-Kirchhoff diffraction integral. For the geometry shown in Figure 16, a given observer position xo yields a

stationary phase position xl = x in the screen. Expanding the screen phase ϕr(x) to second order about this point

gives

ϕr(x) ∼ ϕr(x) + b · (x− x) +
1

2
(x− x) ·C · (x− x), (11.7)

where b ≡ ∇xϕr(x) yields the refraction angle (as viewed by the observer), θ = −k−1(dsl/dso)b. The 2×2 matrix

C has diagonal elements Cx = ∂2xϕr(x) and Cy = ∂2yϕr(x) and off-diagonal elements Cxy = Cyx = ∂2xyϕr(x), where

derivatives are in screen-plane coordinates. A unitary matrix U transforms C into the diagonal form C′ = UCU †

(where † indicates matrix transpose) with elements C ′
x, C

′
y. The rows of U are (cosχ, sinχ) and (− sinχ, cosχ) where

tan 2χ = 2Cxy/(Cx − Cy) and the angle χ is the position angle of the distortion. As with polarization position

angles, the domain of χ is over π radians. We define the diagonal matrix γ with elements Gx and Gy given by

Gx,y = (1 + k−1d ′C ′
x,y)−1 where d ′ = dsldlo/dso.

The magnification of the image is µ = | detA|−1 = [(1 − κ)2 − γ2]−1, where

A =

1 − κ− γ1 −γ2

−γ2 1 − κ+ γ1

 (11.8)

is written in terms of the ‘convergence’ κ and ‘shear’ γ1,2 of the refraction. Defining γ =
√
γ21 + γ22 in terms of

γ1 = γ cos 2χ and γ2 = γ sin 2χ, these are

κ= rF
2(Cx + Cy)/2 (11.9)

γ= rF
2

[
1

4
(Cx − Cy)2 + C2

xy

]1/2
(11.10)

(11.11)

If Id(θ) is the scattered (diffracted) image in the absence of refraction, the refracted image is

Idr(θ) = Id[U †γ−1U(θ − θ)], (11.12)

where θ = −k−1(dsl/dso)b. Refraction renders the scattered image asymmetric and off center regardless of the shape

of the unrefracted (but still scattered) image. Finally, the PBF follows by substitution of Idr(θ) into Eq. 11.2.

Fig. 44 shows the ∼ 30% variability of the scattering time for the MSP J1903+0327, with DM = 297 pc cm−3 (A.

Geiger et al. 2025). The variability time scale ∼ 150 d is consistent with the DM variability and with the estimated

refraction time scale of ∼ 150 d. The similar ∼ 25% variability of τ for the MSP J1643-1224 with DM= 62.4 pc cm−3

(J. Singha et al. 2024) with ∼ 200 d time scale at 0.4 GHz is also consistent with the estimated RISS time scale and

that for DM variations.

Figures 45 - 46 show the effects of refracting screens on δDM, intensities, images, and pulse broadening for DM = 10,

and 300 pc cm−3 where the strength of the refraction is consistent with the pulse broadening specified for each DM

and assuming Kolmogorov density fluctuations with negligible inner scale. [Details of the simulations are available on

request.] The four panels in each of these figures are:
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Figure 44. Scattered pulse shape and variations of the scattering time vs. epoch for the MSP J1903+0327. Scattering times
were calculated from pulses in the NANOGrav 12.5-yr data set like that shown in the inset (A. Geiger et al. 2025).

(a) Slices through the screen for δDM(t), the scattering diameter and refraction angle (the centroid of the scattered

image), a parameter ρI that is related to the orientation of the refracted image, and the refractive gain modulation

G of the flux density and the axial ratio of the refracted image. The abscissa is in units of the Fresnel scale.

(b) Wandering of the image centroid in the image plane showing the size of the scattering disk combined with the

ensemble average image wandering (gray circle).

(c) Delays vs. position along the observation plane from diffraction td (red) and refraction tr (blue) and their sum

(black).

(d) Images and pulse broadening functions at eight positions along the screen separated by multiple refraction length

scales lr. The pulse broadening time is indicated in each of the PBF frames.

Trends that can be seen with increasing DM are:

1. Scattering observables (the scattering disk size θFWHM and the width of the PBF) increase with DM, as expected.

2. Refraction quantities, including angular wandering and refractive ToA delays, decrease with increasing DM if

refraction is from a wavenumber spectrum consistent with that producing the diffraction. However this trend

can be reversed if there is enhanced power on refraction scales ≳ 1 au.

3. Intensity variations diminish with increasing DM, with G = GxGy more closely clustered around unity.

4. Images become more circularly symmetric (axial ratio → 1).

11.4. Inhomogenous and truncated screens

The ‘textbook’ PBFs often considered in pulsar scattering are based on the (usually) tacit assumption that the strength

of scattering (e.g. C2
n) is independent of position in the screen, leading to ‘standard’ scaling laws vs. frequency

for scattering and scintillation parameters. Departures from homogeneity cause the PBF and scaling laws to differ

substantially (CL01). In particular, if angles of arrival are bounded by the spatial extent of a scattering region, in

contrast to the unbounded AoAs for an infinite screen, the angular size and pulse broadening time can be only weakly

dependent on frequency in some frequency ranges, as demonstrated in CL01.
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Figure 45. The effects of refraction on the scattered image, pulse broadening function, and ToA delays at 1.5 GHz for a LoS
with dispersion measure DM = 10 pc cm−3. Details are discussed in the text.

The net frequency dependences depend on the details of the scattering region and will not be discussed further here.

The implication for arrival time analyses is that correction of ToAs for scattering delays will likely be imperfect unless

it can be demonstrated that scattering regions are well characterized with respect to their spatial distribution as well

as for the underlying wavenumber spectrum.
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Figure 46. The effects of refraction on the scattered image, pulse broadening function, and ToA delays at 2.1 GHz for a LoS
with dispersion measure DM = 300 pc cm−3. Details are discussed in the text.
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Figure 47. Bandwidth averaging of a power-law PBF for β = 11/3 for ζ0 = 0.01 and τ0 = 1 at the center frequency ν0 = 1.5.
The top panel shows the PBFs and the bottom panel shows values of β inferred from the bandwidth averaged and individual
PBFs at the band edges using β = −2d(ln pd)/d ln ν.

11.5. Bandwidth averaging and phase wrapping

The PBFs applicable to isolated giant pulses from pulsars or one-off FRBs are as described so far. For periodic sources,

however, the effective PBF is ‘phase wrapped,’ meaning that the PBF acting on previous pulses affects the shape of

any given pulse; in averages of N pulses, the net pulse shape is the wrapped, intrinsic pulse shape convolved with a

phase-wrapped PBF. Inferences from pulsars about the ISM based on the shape of the pulse need to take wrapping

into account. All cases may furthermore be affected by bandwidth averaging. The strong frequency dependence of the

scattering time, τ ∝ ν−xτ with xτ = 2β/(β−2) ≃ 4.4 implies that averaging of pulses over frequency after dedispersion

(e.g. to increase the S/N) also alters the net PBF shape.

Bandwidth averaging of a PL PBF combines PBFs with different 1/e scattering times τ and different power-law spans

∝ t−β/2 before rolling off exponentially at a frequency-dependent time related to the inner scale. The net shape differs

from that applicable to any single frequency and depends on the pulsar’s radiation spectrum. Figure 47 shows the

effects of bandwidth averaging over an octave frequency range. The top panel shows the PBFs at the lowest and highest

frequencies along with the average PBF, where a pulsar spectrum ∝ ν−1.5 was assumed. The bottom panel shows

β̂ = (−1/2)d(ln pd)/d ln ν, which equals the true value, β = 11/3, over time ranges far beyond the 1/e scattering times.

The dependence of the PBF shape on the extent of bandwidth averaging certainly factors into any determinations of

β from pulse-shape fitting and into arrival time estimation.

Generally, phase wrapping makes heavy-tailed PL PBFs even heavier (shallower). The long PBF tails for media with

small inner scales (small ζ) can extend over a large number of pulse periods, adding shallower segments to the initial

exponential falloff in an average profile comprising many pulses. Figure 48 shows an example of phase wrapping for

τ = 1 and a period P = 5.1 (arbitrary units, but could be considered ms). The top panel shows the original and

wrapped PBF plotted against pulse phase, while contributions from individual segments from pulse numbers 0 through

100 are shown in the middle panel with inferred β values given to the right of each trace. The bottom panel shows

the inferred β from the apparent power-law portion of the wrapped pulse.
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Figure 48. Phase wrapping of a power-law PBF for β = 11/3, τ = 1, and P = 5.1 (in arbitrary time units). (Top panel) initial
and wrapped PBFs. (Middle panel) segments of length P that are wrapped into one cycle of pulse phase. The segment number

is given to the left of each line and the inferred β̂ = −2d ln pd/d ln t at the midpoint of each segment. (Bottom panel) values of
β inferred from the wrapped PBF.

12. TIMING VARIATIONS FROM CHROMATIC PLASMA EFFECTS

A plethora of systematic and random delays caused by dispersion and scattering contribute to arrival times. While

dispersion and scattering are are distinct processes, their mitigation is intertwined in several ways, as we discuss in

this section.

A primary chromatic effect on ToAs is simply the change in S/N from intensity scintillations, which can cause large

excursions from the mean flux density of a pulsar and affect the matched filtering ToA error discussed earlier.

The modulation index (fractional intensity variation) for DISS is approximately mI ≃ N
−1/2
s where Ns is the number

of scintles within the time span and bandwidth of an observation. Low-DM pulsars observed at ≳ 1 GHz will yield

Ns ∼ 1 to 10, so changes in flux density and ∆tS/N are large. Low frequency observations of higher-DM pulsars will

show a much smaller range of flux densities.

Dispersion measure variations result from the changing direction and distance to the pulsar combined with density

fluctuations in the ISM. The solar corona and Earth’s ionosphere contribute less but still need to be considered in the

highest precision timing. (e.g. C. Tiburzi et al. 2021, and references therein) Fortunately, most of the resulting arrival

time fluctuations can be removed by careful estimation of DM at each timing epoch. However, such removal is based

on imperfect arrival times used to estimate DM, which are themselves imperfect due to a variety of effects. These

include the achromatic errors already discussed along with pulse shape distortions from the stochasticity of the PBF,

from RFI and instrumental effects (polarization calibration and aliasing), and from the interplay of scintillations and

the chromatic aspect of the true pulse shape. It is therefore useful to quantify the full extent of DM variations and

then assess to what degree they can be removed.



90

12.1. Temporal DM variations [DM(t)]

In this section we concentrate on the effects of DM variations on timing and defer to Section 10 a discussion of

ISM diagnostics and their utility in improving arrival times. Of all the interstellar effects on timing, the DM term

δt ∝ ν−2DM is the largest. The largely (but not completely, c.f. §12.2) deterministic variation of this term with

frequency ν allows DM to be estimated with multifrequency timing measurements. One might be tempted to think

that this term can be removed completely (to within random ToA measurement errors). However, other chromatic

effects yield systematic ToA errors, so there is always consequential leakage of DM fluctuations into timing errors.

Fig. 31 shows the DM time series for PSR J1909-3744. It appears to be the superposition of a downward secular trend,

a stochastic ISM component with a red power spectrum, and a yearly oscillation due to the cyclical intersection of the

LoS with the solar corona. This and similar time series have been analyzed by a number of authors (e.g. M. J. Keith

et al. 2012; M. T. Lam et al. 2015, 2016a; M. L. Jones et al. 2017; D. R. Madison et al. 2019; J. S. Hazboun et al.

2022) using structure function analyses of data from PTA programs on millisecond pulsars. The motivation of those

studies has been to characterize electron density fluctuations of the ISM and the solar corona, of interest in their own

right, but they also contribute to an understanding of the overall noise budget for pulsar timing and to ongoing efforts

to improve timing precision.

We focus on stochastic DM variations from the ISM that have red, power-law spectra. While early timing analyses

did not remove these variations, current practice aims to do so. The temporal spectrum of DM is power-law in form

for the inertial range of wavenumbers in the stochastic density spectrum of Eq. 9.1,

SDM(f) =

[
π1/2

(2π)β−3

Γ((β − 1)/2)

Γ(β/2)

]
SMeffv

β−2
x f−(β−1). (12.1)

For Kolmogorov fluctuations (β = 11/3), the DM spectrum is

SDM(f) =
1

22/3π1/6

Γ(4/3)

Γ(11/6)

SMeff

vx

(
f

vx

)−8/3

≃ (5.86 × 10−5 pc cm−3)2

cy yr−1

(
SM

10−3.5 kpc m−20/3

)
v
5/3
100 f

−8/3

≃ (7.70 × 10−5 pc cm−3)2

cy yr−1

(
τ1/1µs

d ′/1 kpc

)5/6

v
5/3
100 f

−8/3 (12.2)

where frequencies are in cy yr−1, vx is in units of 100 km s−1; the first evaluation is in terms of a scattering measure

SM = 10−3.5 kpc m−20/3 and the second evaluation is expressed using a scattering time τ1 = 1µs at 1 GHz and a
1 kpc effective distance. The corresponding arrival time fluctuations have the same spectral form,

StDM(f) = (KDM/ν
2)2SDM(f) ≃ (0.319µs)2

cy yr−1

(
τ1/1µs

d ′/1 kpc

)5/6

v
5/3
100 ν

−4f−8/3 (12.3)

where KDM = cre/2π ≃ 4149µs for standard DM units. Note that these expressions do not include a rolloff at high

fluctuation frequencies due to scattering-cone averaging. Rolloff is discussed in §15.3.

12.1.1. Pulse frequency variations

Though pulse phase and arrival times are the usual focus of timing analyses, the effects of DM(t) on pulse frequency

can also be considered (J. W. Armstrong 1984; F. A. Jenet et al. 2011). The variation in pulse phase, δϕpulse =

δt/P , corresponds to a change in pulse frequency δfpulse = dδϕpulse/dt and a fractional change in pulse frequency

y ≡ δfpulse/fpulse = (cre/2πν
2)(dDM/dt). The power spectrum of y is related to the DM spectrum by use of the

Fourier derivative theorem,

Sy(y) = (cre)
2ν−4f2SDM(f). (12.4)
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For the inertial subrange of a Kolmogorov spectrum this gives

Sy(y) =
π1/2Γ(4/3)

(2π)2/3Γ(11/6)

(cre)
2

ν4
SMeff v

5/3
x f−2/3 ≃ (3.30 × 10−10)2

cy yr−1
× SMeff v

5/3
x f−2/3. (12.5)

F. A. Jenet et al. (2011) discuss the effects of pulse-frequency variations on the detection of lightyear-wavelength

gravitational waves. To a large extent these variations are removed when ToAs are referenced to infinite frequency

using DM estimates at each epoch. However, this procedure is not perfect, yielding residual dispersive delays and thus

pulse-frequency fluctuations. F. A. Jenet et al. (2011) compare the residual spectrum with other cases where all but

0.1% or 1% of the fluctuations in y are removed.

12.1.2. ToA error from asynchronous frequency sampling of DM delays

One cause for imperfect removal of dispersion delays is the estimation of DM(t) from multifrequency ToAs obtained

at slightly different epochs (M. T. Lam et al. 2015).

If a timing precision of σt µs is needed at frequency ν, the required precision for DM is δDM ≲ σt ν
2/KDM ≃

2.41 × 10−4 pc cm−3 × ν2σt(µs). The requirement is more stringent at lower frequencies. Inspection of Fig. 31 for

J1909-3744 and of the DM time series for another 66 pulsars in G. Agazie et al. (2023b) indicates that DM errors

for the best pulsars satisfy this requirement but high DM pulsars at low frequencies may not. More widely spaced

frequencies yield higher DM precision, all else being equal, but the measurements need to be made at closely spaced

epochs. That has been problematic for some observing programs because telescope logistics can require changes in

instrumentation that span several days. Wideband receiver systems now being deployed with ≳ 3 : 1 frequency ranges

provide the needed simultaneous measurements and obviate the problem.

Legacy data, however, retain the issues associated with non-simultaneous dual-frequency measurements. The conse-

quences are easily estimated from the DM structure function. M. T. Lam et al. (2015) analyzed the effects of dual

frequency measurements (νl, νh) made asynchronously at epochs t1,2 spread by a day or more. The ToA at each fre-

quency and epoch is modeled as tν = t∞ + ν−2KDMDM(t) where (for now) we ignore other contributions. Estimating

DM as if it were constant yields

D̂M =
ν−2
l DM(t1) − ν−2

h DM(t2)

ν−2
l − ν−2

h

=
R2DM(t1) − DM(t2)

R2 − 1
, (12.6)

where R ≡ νh/νl is the frequency ratio. When used to estimate the DM-corrected ToA, t̂∞ = tνh −KDMν
−2
h D̂M, the

DM difference ∆DM(t1, t2) = DM(t2) − DM(t1) yields a ToA error,

δt∞ =
KDM

ν2h

(
R2

R2 − 1

)
∆DM(t1, t2). (12.7)

The RMS δt∞ is then written in terms of the DM structure function,

σδt∞(∆t) =
KDM

ν2h

(
R2

R2 − 1

)
D

1/2
DM(∆t). (12.8)

We ignore the contribution from a linear variation in DM associated with the change in distance from a pulsar’s

motion. This is easier to identify and remove than the stochastic variations. Using previous expressions, we write the

RMS ToA error for a Kolmogorov medium (inertial subrange scaling) as

σδt∞(∆t) =

(
R2

R2 − 1

)
×



23.7 ns

ν2h

(
SMeff

10−3.5 kpc m−20/3

)1/2 ( vp⊥
100 km s−1

)5/6
∆t

5/6
days

or

6.54 ns

νh

[
∆tdays

∆tDISS(νh)/103 s

]5/6
,

(12.9)
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where frequencies are in GHz and units of other quantities are shown explicitly. The second form uses the relation

of DDM to the phase SF, DDM(τ) = (λre)
−2Dϕ(v⊥τ), and the connection of the scintillation time scale ∆tDISS to

the spatial scale veff∆tISS where Dϕ(veff∆tDISS) = 1 rad2. We have used ∆tDISS measured at the higher frequency

νh and expressed it in units of 103 s, a representative value for a low-DM pulsar. If an ancillary measurement of

∆tDISS at a frequency νISS is used instead, then ∆tDISS(νh) in Eq. 12.9 is replaced by νhν
−2/(β−2)
ISS ∆tDISS(νISS) =

νhν
−6/5
ISS ∆tDISS(νISS) for β = 11/3.

12.2. Chromatic DM variations [DM(ν)]

Dispersion measures are usually defined as simple LoS integrals of the electron density along a single propagation

path, which yields the deterministic ν−2 dependence for the resulting timing delay. Measured DM values are actually

chromatic because multipath propagation like that illustrated in Fig. 35 is strongly frequency dependent. The DM

differs between ray paths and as the geometry changes with epoch, the collective DM varies. The time scale for such

variations is the time needed for the bundle of ray paths to move by an amount equal to its width, which is the same

as the RISS time scale. As a consequence, the frequency dependence of the ray bundle’s transverse extent causes the

DM at any epoch to also vary with frequency.

The DM(ν) effect is intermixed with chromatic variations of the average emitted pulse shape, making it difficult to

isolate. However evidence for it has been reported (e.g. J. M. Cordes et al. 1990; R. Ramachandran et al. 2006; J. Y.

Donner et al. 2019; D. Kaur et al. 2022).

The differential DM between propagation paths results from variations in electron densities and not from the different

physical path lengths. The latter dominate the scattering time (pulse broadening time) τ described earlier, which is

typically much less than a second for most pulsars at radio frequencies ∼ 1 to 2 GHz used for precision timing. The

associated DM increment from ≲ 1 light second of extra path length is nec ∼ 109 cm−2 for ne = 0.03 cm−3, or a

negligible δDM ∼ 3 × 10−10 pc cm−3.

The frequency dependence of the DM (J. M. Cordes et al. 2016, hereafter CSS16) results from spatial averaging of ray

paths caused by scattering. At observation frequency ν and location x, the DM is the LoS integral of the convolution

of a smoothing function Aν(x, z) with the electron density,

DM(ν,x) = ⟨DM(x)⟩ +

∫ D

0

dz ′
∫ ∞

−∞
dx ′Aν(x ′, z ′)δne(x

′, z ′), (12.10)

where the frequency-independent term ⟨DM(x)⟩ is the ensemble average (denoted by angular brackets) of the integrated

electron density ne. The appropriate smoothing function has a z-dependent, 2D area corresponding to the transverse
cross section of the ray bundle. The scattered image seen by an observer can be used as a starting point but defining

Aν(x) requires knowledge of the strength of scattering vs. z. The image shape is also a function of the type of

medium. In the following we drop the x dependence on DM and consider integrals centered on only a single position

for calculating DM at a particular epoch.

12.2.1. Two-frequency DM difference

J. M. Cordes et al. (2016) analyzed the consequences for timing errors based on dual-frequency measurements for

estimating DM and considered wideband cases using a numerical approach. After summarizing those results we

present a new analysis for measurements over arbitrarily wide bands, which are more in concert with modern timing

programs.

The calculation for the two-frequency case proceeds similarly to the treatment of asynchronous sampling in § 12.1.2.

When the DM is estimated from ToAs obtained at two widely separated frequencies, the measured ToA includes an

error ϵν (from radiometer noise, intrinsic pulse jitter, and DISS),

tν = t∞ +KDMν
−2DM(ν) + ϵν . (12.11)
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If DM is assumed to be frequency independent, the ToAs at two spot frequencies νl < νh measured simultaneously (or

nearly so, i.e. within a few hours to a day) yield,

D̂M =
tνl − tνh

KDM(νl−2 − νh−2)
, (12.12)

and an estimate for t∞ and its error,

t̂∞ = tνh − KDMD̂M

νh2
=
R2tνh − tνl
R2 − 1

, δt̂∞ ≡ t̂∞ − t∞ =
R2ϵνh − ϵνl
R2 − 1

, (12.13)

where R ≡ νh/νl (as before). The error diverges as R → 1 and the error in the high-frequency ToA dominates the

overall error for a large frequency ratio.

An illustration of the mis-estimation of arrival times is shown schematically in Figure 49 for ToA measurements at the

two spot frequencies νl and νh on two separate dispersion curves (black points on the two solid lines). For this figure

we ignore the effects from additive noise ϵν to focus on the systematic error. The estimated dispersion measure D̂M

yields a dispersion curve that connects the two black points and extrapolates to an incorrect t̂∞ ̸= t∞ as shown.

t( l, DM( l))t( l, DM( h))
Time of Arrival

l

h
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Inferred DM
actual TOA
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Figure 49. Illustration of the error in the dedispersed arrival time. Arrival times at two spot frequencies νl, νh (filled black
circles) are delayed by different dispersion measures, DM(νl) and DM(νh) (blue and red, respectively). Estimation of an assumed

frequency-independent D̂M (black curve) then leads to an incorrect infinite frequency arrival time, t̂∞, that is earlier than the
true value, t∞.

The frequency dependence of DM of course only alters the error to

δt̂∞ =
KDM

ν2

(
R2

R2 − 1

)
∆DM(νh, νl) +

(
R2ϵνh − ϵνl
R2 − 1

)
, (12.14)

where ∆DM(νh, νl) = DM(νh) − DM(νl).

12.2.2. Wideband timing errors from chromatic DM variations

The effects of chromatic DMs for wideband systems are obtained by averaging Eq. 12.10 over frequency and calculating

the ensemble mean and variance of the result. This averaging takes into account that the ray bundle’s cross section

is a strong function of location along the line of sight, as illustrated in Figure 50. It can also include the S/N vs.

frequency through appropriate weighting. Here we summarize results derived in Appendix D.

The analysis yields the error in the estimated DM for measurements made over a frequency range νl, νh. Two cases are

given: one with uniform coverage over the entire frequency range and another in the limit where two spot frequencies
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νlνh/3
νh

Figure 50. Scattering cones that illustrate spatial averaging of electron density variations at the highest and lowest frequencies,
νh and νl, and an intermediate frequency νh/3. The observer is at the apex and the tops of the cones represent cross-sectional
areas in either the plane of a thin screen that scatters incident radiation or midway along the LoS in an extended medium. The
diameters of the conal cross sections are shown to scale ∝ ν−β/(β−2) ∝ ν−11/5 for measurements that sample the inertial range
of a Kolmogorov spectrum (β = 11/3).

are used to estimate DM (as in the previous section). The results also can be applied to arbitrary variations of C2
n

along the LoS, including thin screens, finite-width slabs, or a uniform medium with C2
n = constant. We obtain

σDM(R, νh) =
[
Var(δD̂M)

]1/2
= GβQβrec

β/2dso
(β−2)/2ν

−β/2
h I

1/2
DM(R, β) SM, (12.15)

σt∞(R, νh) = [Var(t∞)]
1/2

=

(
KDM

ν2h

)[
It∞(R, β)

IDM(R, β)

]1/2
σDM(R, νh) (12.16)

where we note that the values of these RMS quantities are referenced to the upper frequency, νh. The dependence on

the frequency range used to estimate DM and t∞ is contained in the quantities IDM(R, β) and It∞(R, β) using the

frequency ratio R = νh/νl.

The dimensionless quantities It∞ and IDM are integrals over dimensionless variables r1,2 = νh/ν1,2 are given by

It∞(R, β) =

[
R(R3 − 1)

(R− 1)4

]2 ∫ R

1

∫ R

1

dr1dr2

[
1 − 3(R− 1)r21

(R3 − 1)

] [
1 − 3(R− 1)r22

(R3 − 1)

]
Φ2
β(r1, r2), (12.17)

and

IDM(R, β) =

[
3R

(R− 1)3

]2 ∫ R

1

∫ R

1

dr1dr2
(
r21/R− 1

) (
r22/R− 1

)
Φ2
β(r1, r2), (12.18)

where equal weighting over frequency has been used and

Φ2
β(r1, r2) = 2−(β−2)/2[Vβ(r1) + Vβ(r2) − rβ2Vβ(r1/r2)] − 1 (12.19)

with

Vβ(x)≡ [1 + x2β/(β−2)](β−2)/2. (12.20)

For two equally weighted spot frequencies these become

It∞(R, β) = IDM(R, β) =

[(
R2

R2 − 1

)
Fβ(R)

]2
, (12.21)

which is obtained by using the identity Φ(x, x) = Fβ(x), where Fβ (first defined in CSS16) is

Fβ(r) =

{
2(4−β)/2

[
1 + r2β/(β−2)

](β−2)/2

− rβ − 1

}1/2

. (12.22)
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The It∞ and IDM integrals are shown in Figure 51 for three values of β and for the wideband case (solid black

lines) and the two-frequency case (dashed red lines). While the RMS quantities depend strongly on R, the ratio

It∞(R, β)/IDM(R, β) is less variable.

The factor Qβ depends on the index of the wavenumber spectrum, β,

Qβ =
(
√

2π)4−βΓ(2 − β/2)fβ
β − 2

, (12.23)

where fβ is defined in Eq. 9.6. All of the line of sight dependence across the source-observer distance dso is contained

in Gβ ,

G2
β =HβSMeff/SM (12.24)

where SMeff and Hβ involve LoS integrals of C2
n,

SMeff

SM
=

∫
dsC2

n(s)(s/dso)β−2∫
dsC2

n(s)

, Hβ =

∫
dsC2

n(s)[h(s)]β−2∫
dsC2

n(s)

, (12.25)

and h(s) defines the width of the ray-path bundle along the LoS. Determination of h(s) generally requires a numerical

solution, but for a thin screen it is

h(s) =


s

dsl

(
1 − s

dso

)
s ≤ dsl,

1 − s

dso
s ≥ dsl,

(12.26)

which has a value h(dsl) = dlo/dso at the screen itself. For a uniform medium it is

h(s) =
dsl
dso

(
1 − dsl

dso

)
. (12.27)
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Figure 51. Plot of It∞(R, β) and IDM(R, β) vs. frequency ratio R = νh/νl for three values of β. Solid lines: wideband case
with equal weights using Eq. 12.17 - 12.18. Dashed lines: two-frequency cases using Eq. 12.21.

Evaluating for a Kolmogorov index β = 11/3 with a nominal scattering measure SM = 10−3.5 kpc m−20/3 = 4.53 ×
104 cm−17/3, we obtain Qβ ∼ 22 and

σδt∞ = [Var(δt∞)]1/2 = 156 ns ×Gβ ν
−23/6
h dso

5/6 SM−3.5It∞(R, β) (12.28)

σ
δD̂M

= [Var(δD̂M)]1/2 = 3.76 × 10−5 pc cm−3 ×Gβν
−11/6
h dso

5/6 SM−3.5IDM(R, β). (12.29)
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We note that the dependence on the upper frequency νh for the excess DM variation is σ
δD̂M

∝ ν
−11/6
h for a Kolmogorov

spectrum (inertial subrange) while the ToA variation has a much stronger dependence, σδt∞ ∝ ν
−23/6
h . The actual

ToA error also depends on the frequency ratio R and can be much smaller than the nominal values for a narrowband

system, particularly if the upper frequency νh is well above 1 GHz.

12.3. Angle-of-arrival variations

Structures in the ISM larger than the Fresnel scale
√
λd ′/2π ≈ 1011 cm refract radiation, causing the angle of arrival

(AOA) to deviate from an assumed fiducial direction, which itself may differ from the true direction as defined by

the vacuum geodesic. Assuming the topocentric and barycentric AoAs are the same (after accounting for aberration

and Doppler shift from Earth’s motion), pulses will arrive earlier or later than expected for the fiducial direction.

Translation of topocentric ToAs to the solar system’s barycenter (SSBC) involves accounting for the Römer delay (as

well as other delays), ∆t Römer = n̂ · r⊕(t), where n̂ is the pulsar direction and r⊕ is the Earth-SSBC vector.

If the actual arrival direction differs from n̂ by a refraction angle θr, the associated error in the ToA at the SSBC is

∆tAOA≈ 1

2c
d ′θr

2 ≈ 1.21 µs d ′θr
2 (12.30)

for d ′ in kpc and θr in mas. The delay increases at lower frequencies as ν−4 if refraction is produced by a discrete

cloud but scales as ν−49/15 for a Kolmogorov medium where ray averaging from diffraction alters the scaling. The first

case scales similarly to the pulse broadening time and would be partially removed by a ToA fitting function designed

to account for scattering. Less removal would occur for the second case.

The second effect associated with transformation of ToAs to the SSBC (R. S. Foster & J. M. Cordes 1990) is proportional

to θr. Assuming a circular orbital frequency Ω⊕, and defining the SSBC to Earth vector as r⊕ , and source direction

n̂, the offset is

∆tAOA,SSBC = c−1n̂ · r⊕(t) ≈ c−1r⊕θr(t) cos be cos Ω⊕(t− tp) ≈ 2.4 µs θr(mas) cos be cos Ω⊕(t − tp), (12.31)

where r⊕/c ≈ 500 s. The eccentricity of the Earth’s orbit ∼ 0.017 implies additional harmonics in the ToA perturbation

but these are smaller by powers of the eccentricity. This offset scales with frequency as ν−2 if a discrete cloud dominates

refraction but refraction from a Kolmogorov medium yields an RMS variation θr(RMS) ∝ ν−49/30.

12.4. PBF stochasticity from nanoseconds to years

PBFs vary on time scales of nanoseconds to years, depending on the integration time relative to various scattering and
scintillation time scales. Figure 52 shows three averaging regimes for PBFs defined analogously to scattered images

(R. Narayan & J. Goodman 1989).

An averaging time shorter than the DISS time scale ∆td ∼minutes to hours yields a noisy PBF like those shown in

Figures 17 and 35. The noise pattern remains constant for averaging times ≪ ∆td. Radio timing programs generally

integrate over multiple DISS times, yielding a less noisy PBF that better reveals the envelope portion of the PBF.

Even so, an epoch average is still subject to refractive distortion of the PBF by electron density variations much larger

than diffraction scales. Only by averaging over many epochs should a PBF shape approximating an ensemble average

be expected. In principle, this would imply averaging times greater than the crossing time of the outer scale, which

could be Myr for an outer scale lo ∼ 100 pc (c.f. Figuure 33).

This long a time scale is of low relevance, however. First, for density fluctuations dominated by a Kolmogorov spectrum,

refractive distortion is dominated by scales ∼ lr ≪ lo, the ‘refraction’ scale applicable to RISS, which is of order the

typical diamaeter ∼ au of the ray path bundle along which pulses propagate. Second, other structures exist in the ISM

that superpose with Kolmogorov fluctuations and dominate refraction episodically with time scales of days to months.

The range of random and systematic errors from scattering discussed in the next sections originate from the effects

identified for the three regimes shown in the figure.
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12.5. Rapid stochasticity of PBFs and ToA noise

The primary multipath effects on ToAs are due to the changes in pulse shape caused by the PBF, which are both

systematic and stochastic, and the uncertainties in removal of dispersion delays resulting from the chromaticity of DM

that, in turn, is a consequence of multipath propagation.

Scattered profiles are the convolution (denoted by an asterisk) of a scaled and time-shifted intrinsic pulse shape

Ii(t) = aU(t− t0) with the PBF,

I(t) = aU(t− t0) ∗ p(t, τ) = a

∫
dt ′ U(t− t0 − t ′)p(t ′, τ), (12.32)

where a is a linear scale factor and t0 is the arrival time in the absence of scattering; we include an explicit argument

τ as the characteristic 1/e time scale of the PBF.

The pulse broadening function is defined as the set of delays associated with multipath propagation through ionized

gas. As such, it comprises geometrical path length differences caused by both diffraction and refraction. Stochasticity

of the PBF, both short and long term, causes statistical perturbations of ToAs. On pulse-to-pulse time scales, the

PBF follows the ‘envelope × noise’ form that yields a systematic delay from the envelope combined with a random

error from PBF noise. For long integrations at a given epoch (T ≫ ∆td) and a wide bandwidth (B ≫ ∆νd), many

scintles are averaged over in the ToA estimate, diminishing but not eliminating the random error.
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Figure 52. Averaging regimes for PBFs analogous to the description of snapshot and averaging regimes presented by R.
Narayan & J. Goodman (1989) for scattered images. The snapshot case (left) corresponds to averages over less than a DISS
time scale, ∆td that include some number of scintles across frequency. An epoch average spans many scintillation times and
includes many more scintles, producing a more stable PBF shape than for a snapshot. However, such averages are subject to
distortions caused by refraction from larger density fluctuations than those that cause diffraction. Only by averaging over all
refraction-induced PBF variations is the ensemble average PBF obtained. For a Kolmogorov spectrum, however, refraction is
dominated by scales of order the refraction scale lr defined earlier.
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We discuss two consequences of PBF noise on arrival times. The first concerns induced variations in the effective

center frequency of a measurement if dedispersion is not employed or if it is executed with an inaccurate DM value.

The second TOA perturbation arises from the short-term variability of the PBF itself. Together, they illustrate the

utility of using both the time and frequency domains in characterizing these propagation effects as well as mitigating

them.

Both effects arise from the finite number of scintles in the time-frequency plane used to form a pulse profile and

calculate an arrival time. For a total time T and bandwidth B, the number of scintles is approximately

Ns ≡ NνNt ≃ (1 + ηνB/∆νd)(1 + ηtT/∆td), (12.33)

where ην and ηt are filling factors for scintles with values ∼ 0.2 to 0.4 that depend slightly on the medium.

12.5.1. Scintillation induced changes in effective center frequency

Dedispersion removes delays ∝ DM(ν−2−ν−2
ref ) with respect to a specified reference frequency. No error in arrival time

results if the correct value of DM is used. In some early (∼pre-1990s) timing analyses of long period pulsars, differential

dispersion delays across narrow receiver bands were considered small and no dedispersion was done. However, without

dedispersion, diffractive intensity scintillations across the band shift the effective center frequency stochastically on

a time scale equal to the scintillation time ∆td ∼ (minutes to hours), causing a variable dispersion delay. If the

bandwidth B contains a large number of scintles but is small enough so that the pulsar’s intrinsic flux density and

scintillation parameters are roughly constant, the effective center frequency shifts by ∆νDISS with an RMS value σν =

B/
√

12Ns. This yields an ensemble mean dispersion delay (for DM in pc cm−3 and ν in GHz) tν = (cre/2πν
2)DM ≃

4.15 ms ν−2 DM and RMS fluctuations about the mean delay,

σtν ≈ dtν
dν

σν =

(
2σν
ν

)
tν ≃ 2.4 ms

(
B

ν

)
DM√
ν2Ns

. (12.34)

Early timing measurements with fractional bandwidths B/ν ∼ 10−3 on low-DM pulsars yielded small errors relative

to other ToA errors. A counterexample where this scintillation effect dominated other errors is the bright Vela pulsar

(e.g. G. S. Downs & J. Krause-Polstorff 1986, unpublished JMC analysis).

Modern dedispersion methods (post-detection dedispersion with channelized intensities or coherent dedispersion), if

done with an incorrect value of DM, will also yield (small) ToA errors from this effect. Post detection methods divide

B into narrow channels with DM delays removed between channels. Intrachannel dispersion produces a TOA error

given by replacing B in Eq. 12.34 with the channel width ∆νc. If the DM used for dedispersion is in error, the TOA
error is calculated by replacing DM with the DM error δDM. Such errors may arise due to interstellar variance in DM

and usage of a non-contemporaneous value of DM in the dedispersion. DM errors are typically < 10−3 pc cm−3, so

this will yield a small error ≲ 1µs that adds to the larger error, δtν ∝ ν−2δDM.

12.5.2. Rapid changes in PBF shape (the “finite scintle error” (FSE))

The noise process in the PBF (c.f. Figure 35) is due to the specific set of random path delays contributing to the

measured wavefield, which also yield constructive and destructive interference across frequency.

For an integration time T ≪ ∆td the realization of PBF noise is approximately constant, so Nt = 1; ∆td can range

from seconds (for heavily scattered pulsars with large transverse velocities) to hours and it introduces an arrival time

error that varies on the same time scale. This regime corresponds to the set of inequalities,

τ ≪ T ≪ ∆td ≪ ∆tr, (12.35)

where ∆tr is the refraction time scale. A noisy PBF then typically corresponds to a large number of scintles across

the receiver bandwidth, Nν ≫ 1.
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Figure 53. The RMS FSE error σtDISS
plotted vs. DM evaluated using the ‘hockey stick’ relation (Eq. 10.16) to evaluate τ from

DM and Eq. 12.38. with B = 0.1 GHz. The black point (with 10× actual error) is from a timing analysis of the MSP B1937+21
that determined the DISS timing error by subtracting (in quadrature) the S/N and jitter timing errors (JMC, unpublished
analysis).

The character of the noise process depends on the number of scintles Nν in the bandwidth B. Heuristically, if the

band is narrower than a scintle, B ≲ ∆νd (e.g. for low-DM pulsars measured at high frequencies), the imposed phase

variation across the band ∆ϕ ≲ 1 rad, yielding a group delay τ ∼ ∆ϕ/2πB ≲ 0.16ν−1 ns for B in GHz. When Nν ≫ 1,

the ∼ 1 rad phase gradient across each scintle gives a larger delay τ ∼ 1/2π∆νd ∼ 0.16 × (1 MHz/∆νd), µs. These

delays are statistical with an average τ consistent with the uncertainty relation in Eq. 9.10.

For a scattered impulse, the ToA variance31 from the finite number of scintles is formally given by (Appendix H) the

integral over the (squared) PBF envelope (i.e. the ensemble average PBF, ⟨p(t)⟩ ,

σt
2
DISS

(ν0) ≃ B−1
eff

∫
dt t2⟨p(t; ν0)⟩2 (12.36)

where the effective bandwidth is the integral B−1
eff =

∫
dν |b(ν)|2 over the squared field (voltage) bandpass function,

b(ν), defined to have bandwidth B and unit area. For a rectangular bandpass, Beff = B.

For longer integration times T ≫ ∆td (e.g. an observing session ∼ 1 hr) over which the scintillation frequency structure

changes and thus p varies, the net RMS delay involves an integral over the 2D intensity correlation function ΓI(δν, τ).

This correlation function can be calculated in closed form only for a square-law structure function but not for realistic

media. The details are not of interest and so we use a heuristic approach.

Each scintle contributes an RMS delay ∼ τ , corresponding to a phase change ∼ 1 rad across ∆νd; the integrated effect

over Ns scintles in the B − Tint plane yields an RMS time shift,

σtDISS
∼ τ/

√
Ns, (12.37)

with Ns given approximately by Eq. 12.33. A simple scaling law results by calculating ∆νd and ∆td in terms of τ .

From τ ∼ d ′θd
2/2c we obtain ∆td = ld/veff = λ/2πθdveff and ∆νd = C1/2πτ . This gives

σtDISS
≃ [cd ′τ(ν)]1/4

2π
√
ηνηtBTνveff

≃ 0.052µs× (d ′τ)1/4√
(B0.1T3 v100 ν

, (12.38)

31 Note that the RMS FSE effect is denoted σtDISS
here but in other contexts we will use alternative notation, ∆tDISS, ∆tFSE, and ∆tδp,

for convenience. This is indicated in Table 11.
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where τ in µs is evaluated at ν in GHz and d ′ is in GHz and the B is in units of 0.1 GHz.

Fig. 53 shows σtDISS
for two radio frequencies using the expression for τ(DM) in Eq. 10.16. We have approximated dis-

tances as d ′ = (DM/ne)/(1+DM/1000 pc cm−3) with ne = 0.03 cm−3. This empirical approach implies an asymptotic

scaling for the ToA error, σtDISS
∝ ν−4.9DM11/8.

The scaling of the RMS FSE timing variation, ∆tδp, with frequency depends on the number of scintles included in

the time-bandwidth product (T × B) of a timing measurement. The scaling law is different for the four cases where

T and/or B are larger or smaller than the characteristic scintle size, i.e. whether Nt and/or Nν are unity or much

larger than unity. The scaling laws also depend on whether the scattering is strong or superstrong, which are defined,

respectively, as whether scintillations are dominated by scattering from electron density length scales in the inertial

subrange li ≪ l ≪ lo, or by the inner scale. Table 5 gives frequency scaling laws for the different regimes for the

frequency scaling law for ∆tPBF ∝ ν−X , which shows the dependence on the type of medium (β), whether the scattering

is strong or superstrong, and on the bandwidth and integration time relative to the DISS bandwidth and time scale.

We do not give a scaling law for the weak scattering regime where Nt = Nν = 1 and τ ∼ 1/2πν is negligible, typically

less than a nanosecond.

Table 5. Scaling Laws for Finite Scintle ToA Error (∆tδPBF)

Frequency index X in ν−X

Regime
Scatteringa

strength

T

∆td

B

∆νd
X[τ ] X[Nt] X[Nν ] X[∆tδPBF] X[∆t

(Kol)
δPBF]

Low DM, high ν strong ≪ 1 ≪ 1
2β

β − 2
0 0

2β

β − 2

22

5

Low DM, high ν, high v strong ≫ 1 ≪ 1
2β

β − 2

2

β − 2
0

2β − 1

β − 2

19

5

Moderate DM, low v, strong ≪ 1 ≫ 1
2β

β − 2
0

2β

β − 2

β

β − 2

11

5

Moderate-high DM, typical v strong ≫ 1 ≫ 1
2β

β − 2

2

β − 2

2β

β − 2

β − 1

β − 2

8

5

High DM, low ν, typical v superstrong ≫ 1 ≫ 1 4 1 4
3

2

3

2

aStrong scattering corresponds to scaling laws applicable for the inertial subrange of the electron density spectrum.
Superstrong scattering corresponds to scintillations dominated by the inner scale of the density spectrum.

12.6. Slow stochasticity of PBF envelopes and ToA bias

ToAs are often obtained using integration times and bandwidths encompassing a large number of scintles, which make

the finite-scintle error subsidiary to other errors. Epoch to epoch, however, the PBF envelope could change through

any inhomogeneity of the scattering strength, e.g. variations in scattering measure SM; this is unlikely on time scales

of years given that SM is plausibly determined by ISM structures on large scales that might take centuries or more

for lines of sight to cross. More likely is variable refraction from more rapidly crossed scales that alter the ray bundle

as the LoS traverses the medium. Refraction associated with the density spectrum will cause changes on time scales

similar to intensity variations from RISS, which varies on time scales of hours to days for pulsars that are weakly
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scattered (low DM and high ν measurements) and weeks to years for larger scattering (high DM , low ν). These time

scales differ substantially between different pulsars for the same ν-DM combinations due to differing effective velocities.

Also, refraction from larger-scale structures (≳AU) that superpose with stochastic density variations can yield much

larger changes in PBFs.

Temporal variations in the PBF shape are also frequency dependent. Coupled with the chromaticity of intrinsic pulse

shapes, the cumulative, non-dispersive arrival time variations have dependences on frequency that require a careful

mitigation approach unique to each pulsar.

12.6.1. Inapplicability of the ‘mean-shift’ scattering regime

The stark difference between exponential and PL PBFs is demonstrated by considering the mean-shift regime. If the

PBF is much narrower than the intrinsic pulse (width Wu) for all times where the PBF contributes significantly to the

convolution in Eq. 12.32, a first-order Taylor expansion of the intrinsic shape, U(t−t ′−t0) ≃ U(t−t0)+(dU(t−t0)/dt)t ′

yields a scattered profile that is simply a shift of the intrinsic shape, Id(t) ≃ aU(t− t0 − ⟨t⟩p), where ⟨t⟩p =
∫
dt t p(t).

For an exponential PBF with τ ≪ Wu, the mean-shift regime applies. However, this deceptively simple result masks

two issues. First, the mean shift ⟨t⟩p is not the same as the characteristic scattering time τ , as demonstrated in §12.6.2.

Second, the linear expansion underlying the mean-shift breaks down for heavy-tailed PBFs32 that extend well beyond

the intrinsic pulse width.

Fig. 54 exhibits the biases that result from fitting with an exponential PBF when a power-law PDF actually applies.

The left panel shows the scattering time estimate τ̂GE for a Gaussian pulse scattered by a PBF with β = 11/3 and

ζ = 0.01. The arrival-time bias (right panel) depends on the kind of template used for estimating arrival times:

1. If scattering is ignored by usage of a Gaussian template (wide solid lines), the ratio of ToA to τ exceeds unity

for small τ and declines to < 1 for larger τ . The ToA bias is larger for wider pulses.

2. If a G*E template (i.e. a Gaussian convolved with an exponential PBF) is used with scattering time fixed to the

true value of τ (thin solid lines), the bias is smaller but shows the same trends as with a G-only template;

3. If τ is optimized with a G*E template, the ToA bias is negative (dashed lines).

The excess of the scattering time estimate over the true scattering time declines with larger τ and wider Gaussian

pulses. While the ratio of ToA to τ asymptotes to zero for large τ , the ToA bias is still significant for values of τ

encountered in many pulsar timing contexts.

Additional simulated cases quantify how the mean-shift regime fails for PL PBFs. Figure 55 shows the ratios t̂/τ vs.

τ/Wu. For the exponential PBF, the mean-shift regime can be seen to apply for τ/Wu ≪ 1 where t̂/τ = 1. However,
the mean-shift result is violated by the Kolmogorov case which shows t̂ > τ for small τ/Wu. This discordance follows

from the long tail of the Kolmogorov PBF when the inner scale is small (§ 11). For both kinds of PBF, t̂ < τ by

increasing amounts for τ/Wu > 1. This indicates that in most cases, the ToA shift differs from τ . The ISM yields

epoch-dependent τ values, so any correction for variable PBF envelopes must take into account the ratio of τ to the

intrinsic width. The trends shown here for a Gaussian pulse extend to arbitrary pulse shapes with finite widths.

In practice, ToAs are obtained over a wide frequency range for estimation and removal of chromatic propagation

delays. These estimates are affected by the well known chromaticity of the scattering time, τ ∝ ν−xτ with xτ ∼ 4

but they are also affected by the non self-similar PBF shapes from the strong variation of the diffraction scale ld with

frequency, which alters ζ = li/ld and thus the PBF shape.

For a thin screen and strong scattering and using ldθ
(c.f. Table 4, item 6),

ldθ
=

1

2πν

[
cd ′

τ(ν)

]1/2
≃ 1.53 × 104 km × 1

ν

[
d ′

τ(ν)

]1/2
(12.39)

32 ‘Heavy tailed’ means that the PBF is not exponentially bounded for a significant time range, though we emphasize that PBFs are
exponentially bounded at very large times due to the inner scale of the medium.
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Figure 54. Bias of scattering time and arrival time estimates when exponential PBFs are used to fit Gaussian pulses scattered
by a Kolmogorov medium (β = 11/3) with a small inner scale, ζ = 0.01. The three Gaussian widths used are designated in
the legend. Left: The ratio of estimated τ̂G∗E to true scattering time τ for a G*E template applied to a G*PL pulse. The
ratio decreases as the scattering time becomes a larger fraction of the Gaussian width W50. Right: The ratio of ToA estimate
to scattering time τ for three different pulse-fitting approaches and three different Gaussian widths; t̂G is the ToA obtained
with a Gaussian-only (G) template. t̂G∗E(τ) is the ToA obtained with a GE template with a scattering time fixed to the true
scattering time; and t̂G∗E(τ̂) is the ToA obtained with a G*E template with an estimated scattering time τ̂ that optimizes the
pulse fitting (minimum mean-squared difference).
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Figure 55. Simulated arrival time shifts resulting from template fitting of Gaussian pulses scattered by thin phase screens. Left:
The normalized shift t̂/τ is plotted vs. τ/Wu, where Wu is the width (FWHM) of the assumed Gaussian pulse scattered by either
an exponential PBF or a PBF from a power-law medium with β = 11/3 and a small inner scale, ζ = li/ld = 0.01. The scattering
time τ is the 1/e width for both kinds of PBF. The red curve is for a Gaussian-exponential pulse with a Gaussian template. The
blue curve is for a power-law PBF convolved with a Gaussian that is also template fitted with the same Gaussian. The green
curve results from the same pulse shape as for the blue curve but with a template comprising the Gaussian convolved with an
exponential PBF having the same τ as the power-law PBF. For larger values of li/ld, the blue lowers to values asymptotically
closer to unity for τ/Wu ≲ 0.1. Right: Shift ratio Rt̂/τ = t̂/τ vs. ζ = li/ld and rτWu = τ̂ /Wu, shown as pseudo color and
contours with levels of Rt̂/τ marked.

for ν in GHz, d ′ in kpc, and τ in microseconds. Using Eq. 12.39 and li = 103 km li3,

ζ ≡ li
ldθ

≃ 0.0653 × (νli3)
( τ
d ′

)1/2
, (12.40)
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so ζ ≪ 1 and a heavy tailed PBF is expected for nominal values, which are relevant to most MSPs observed in PTA

programs. For heavily scattered pulsars, ζ ≳ 1 and the PBF can satisfy the requirements for the mean-shift regime

because it tends toward an exponential form.

Table 6 shows the phase space for scattering corrections in terms of ζ and the ratio τ/Wu. For the mean-shift regime

to apply (upper left quadrant in the table), the PBF must be exponentially bounded with the ratio rτWu
= τ/Wu ≪ 1.

A power-law medium with an asymptotically exponential PBF also requires ζ ≫ 1. Together, these two conditions

constrain the scattering time to the range,

234µs × (νli3)−2d ′ ≪ τ ≪ 103 µs ×Wu. (12.41)

The mean-shift regime applies to heavy scattering of pulsars with wide pulses. The other three quadrants require full

pulse-shape modeling33 or deconvolution of the PBF from measured pulses in timing analyses. One of these is the

lower left quadrant applicable to the precision timing of MSPs for PTAs.

Table 6. Scattering Correction Phase Space

Inner scale regime rτW = τ/Wu

———————————————————– ———————————————————–
ζ = li/ld ≪ 1 ≫ 1

Mean shift regime Modeling required
I(t) = aU(t− ⟨t⟩p I(t) = aU ∗ p
PBF → Exp PBF −→ Exp

ζ ≫ 1 Large DM, low ν Large DM, low ν
(ld small → τ large) Large Wu Small Wu

Large P pulsars, magnetars Many pulsars

Modeling required Modeling required
I(t) = aU ∗ p I(t) = aU ∗ p
Heavy-tailed PL PBF Heavy-tailed PBF

ζ ≪ 1 Small DM, high ν Small DM, high ν
(ld large → τ small) Small to large Wu Very small Wu

MSPs to magnetars Microstructure, nanoshots
Most PTA pulsar data

12.6.2. Time delays from heavy tailed PBF envelopes

The variety of PBF envelopes has implications for diagnosing and correcting arrival times for scattering delays. Here

we make the important distinction between the PBF delay, the mean delay calculated by treating the PBF as a

probability density function, and the excess ToA induced by the PBF through convolution with the intrinsic pulse

shape. Generally they are not the same. We first discuss PBF delays and then analyze measureable ToA delays that

are of greater importance to pulsar timing applications.

Arrival time delays caused by PBFs are generally smaller than the mean PBF.

Template fitting to obtain an arrival time estimate is equivalent to maximizing the cross correlation CIU (t) between

the profile and template U ,

∂tCIU (t̂) = 0 where CIU (t) =

∫
dt ′ U(t ′)I(t ′ + t− t0), (12.42)

33 Note that a template that includes scattering, albeit with a fixed amount, will yield ToA errors due to epoch dependence of the scattering.
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Figure 56. Fitting of scattered pulses and resulting ToA errors. The Gaussian intrinsic profile (blue) is scattered with a
Kolmogorov PBF with ζ = 0.01 (corresponding to an inner scale that is 1% of the diffraction scale, ld). The scattered profile
(black) is fitted with a Gaussian (G) template that has the same width WU as the intrinsic profile and it is also fitted with a
template comprising a Gaussian convolved with an exponential PBF (G*E, orange); the exponential PBF has an e−1 scale that
yields a best fit to the scattered profile. The true ToA in this case is zero but both templates lead to an error, as shown with
the downward arrows. The G template yields a positive ToA error while the G*E template yields a negative ToA error. Inset:
a zoom-in of the pulse on a log vertical scale that shows the long tail of the actual PBF, which would extend further than the
10 ms period of the simulated pulse but is truncated at one period.

Inspection of CIU indicates that a template identical to the profile shape, U ∝ I, yields an unbiased estimate t̂ = t0.

However, the variability of interstellar effects and the also chromatic and sometimes variable intrinsic pulse shapes

guarantee that this will rarely apply34.

Power-law media yield heavy-tailed PBFs and resulting delays that can be substantially larger than those expected

from an exponential PBF, as shown in §11.2.

Fig. 56 shows an example Gaussian pulse scattered with a Kolmogorov PBF with a finite inner scale (ζ = 0.01). The

Gaussian width (FWHM) is 50µs and the scattering time is τ = 5µs. A perfect template (equal to the Gaussian

convolved with the true PL PBF) would yield zero ToA for this example (black tick mark shown at the bottom of

the figure). A Gaussian-only (G) template yields a positive ToA error of 6.53µs while a best fit using an exponential

PBF convolved with a Gaussian (G*E) yields a negative ToA error of −2.16µs. The inset shows the wraparound of

the long tail of the PBF. The scattered profile can be evaluated as the convolution of the intrinsic pulse over a single

pulse period P with a synchronously averaged (‘folded’) PBF envelope given by

pwrap(t) =

M∑
m=0

p(t+mP ). (12.43)

Heavy tailed PBFs can extend beyond the 1/e time scale τ by many orders of magnitude. The multiplicative factor is

(2π/ζ)2 = (2πld/li)
2 ≫ 1 for ζ ≪ 1. Even for low-DM pulsars with small τ = 10 ns, the tail contributes significantly

across the entire period of most MSPs, as demonstrated in the inset of Fig. 56.

Results for power-law PBFs are shown in Figure 57 (left panel) for a Gaussian intrinsic pulse shape and a variable

(e.g. with epoch) τ(t), giving I = G ∗ PL(τ) . A template comprising a Gaussian pulse and PBF with a fixed τ0

34 X-and γ-ray timing are not affected by interstellar plasma propagation but profiles are energy dependent. Low energy X-ray pulses can
be affected by scattering from interstellar grains as well as being absorbed. These effects are not expected to be epoch dependent, at
least on time scales of years.



105

U = G ∗ PL(τ0) yields systematic ToA errors when scattering differs from that of the template (top right panel).

The different cases show that the ToA error depends on both the scattering time and the widths of the unscattered

pulses and is positive or negative depending on the difference ∆τ = τ(t) − τ0. The bottom panel shows dimensionless

derivatives dToA/dτ . They demonstrate that the change in ToA is greater than the change in τ for small scattering

times, which are applicable to low-DM pulsars observed at GHz frequencies. As τ becomes a larger fraction of the

pulse width Wu, the derivative declines below unity.
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Figure 57. Arrival time analysis of scattered pulses using a fixed template. Left: Simulated scattered pulse profiles. The
intrinsic shape is a Gaussian function with width (FWHM) WU = 36µs. The template equals the intrinsic shape convolved
with a PBF with fixed τ0 = 1.5µs. The heavy-tailed PBF shape is for a thin screen having Kolmogorov fluctuations and small
inner scale. Individual profiles are calculated with scattering times ranging from 0.1 to 10×τ0. Right: ToA offset vs scattering
time when a template with fixed scattering time τ0 is applied to profiles having a range of scattering times τ . The curves apply
to different combinations of template width WU and template scattering times, as indicated in the legend in µs. Black circles
show the expected zero ToA offsets that result from identical profile and template scattering times.

12.6.3. ToA shifts from scattering islands

The PBF envelopes discussed above and in the literature are highly idealized because they are based on simple

scattering geometries and media. Refraction, truncated screens, and inhomogeneous scattering across screens (§11.4)

present numerous types of departures from the simplest geometries, too many to make generalized conclusions. Instead

we consider an alternate setup where multipath takes the form of multiple (Ni) distinct images, each yielding a pulse
that is a copy of the template.

The relevance of multiple image islands comes from studies of scintillation secondary spectra, which sometimes indicate

the presence of two or more separate image patches (e.g. D. A. Hemberger & D. R. Stinebring 2008; W. F. Brisken

et al. 2010). These typically comprise a dominant image combined with subimages with substantially less flux density.

However, the corresponding pulses can arrive significantly later than the primary pulse. Here we assess how the

strength of a subimage and its delay combine to influence the net arrival time.

The measured pulse is the superposition of a strong, primary pulse with unit amplitude and Ni weaker pulses with

amplitudes ϵj ≪ 1 and delays ∆j ,

I(t) = U(t− t0) +

Ni−1∑
j=0

ϵjU(t− t0 − ∆j). (12.44)

Template fitting with U(t) gives a ToA offset from t0 written in terms of the template’s ACF,RU (τ) ∝
∫
dtU(t)U(t+τ),

δtmult ≃
∑
j ϵjR

′
U (∆j)

R ′′
U (0) +

∑
j ϵjR

′′
U (∆j)

Gaussian−−−−−−−−−−−→
Wa=width@ 1/e

∑
j

ϵj∆je
−(∆j/Wa)

2

, (12.45)
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where the final expression assumes a Gaussian pulse with width W = Wa/
√

2 and that
∑
j ϵjRU (∆j) ≪ 1.

For a single extra image, the maximum offset is δtdual ≃ ϵ∆/e for ∆ = W and the offset is zero if the two pulses

coincide (∆ = 0) or are far apart (∆ ≫W ). An example indicates the sensitivity to the presence of a weak secondary

image. For ∆ = W = 100µs, δtdual < 100 ns requires ϵ < 2.7×10−3. On the other hand, a smaller separation ∆ = 1µs

yields the same limit on δtdual for a brighter secondary pulse with ϵ < 0.27.

Extra subimages render additional stochasticity to PBF shapes that certainly require empirical characterization rather

than textbook modeling. However, the stability of the PBF envelope over multiple epochs can help. Monitoring of

pulsars indicates that scattering patches can persist for months or years (A. S. Hill et al. 2005) with smooth evolution

of their structure.

12.6.4. Implications for the frequency scaling of timing offsets from scattering

Of interest here is the frequency scaling of systematic timing offsets for low-DM MSPs used in PTAs. Recall that if

the actual scattering were from an exponential PBF and τ ≪ Wu, the offset would be t̂ = τ . The left hand panel of

Figure 55 shows that the ToA offset t̂/τ > 1 if scattering is from a heavy-tailed PBF and template fitting is done with

an unscattered pulse shape35. The deviation from unity increases for smaller values of rτW . For a specific pulsar, this

corresponds to higher frequency measurements.

The ToA shifts shown in Figure 55 (right panel) for different ζ values indicate that smaller values of τ/Wu yield larger

fractional ToA shifts t̂/τ and the largest ToA shifts are for ζ ≲ 0.1. This regime applies to nearly all of the MSPs used

in PTAs. We also see for ζ ≪ 1 that Rt̂τ = t̂/τ is nearly independent of ζ but depends systematically on rτW (e.g.

blue line in the left panel of Figure 55).

Frequency scaling: The net scaling law with frequency combines the scaling τ ∝ ν−xτ with the scaling of t̂/τ with

τ/Wu when a Gaussian template is used. Numerically we find for τ/Wu ≪ 1 that t̂/τ ∝ (τ/Wu)−xt̂τ with xt̂τ ≃ 0.168

(blue curve in left panel of Figure 55 ). Then t̂ ∝ ν−xt̂ with xt̂ = xτ (1 − xt̂τ ) ≃ 3.66 for xτ = 2β/(β − 2) = 4.4 for

β = 11/3. For larger ratios τ/Wu ≳ 1, xt̂τ increases as the blue curve steepens, yielding smaller xt̂ and a shallower

variation of t̂ with frequency. The essential point is that the dependence of the ToA delay on frequency is weaker than

that of the scattering time τ and it gets progressively weaker at lower frequencies.

Scattering corrections: Improvement of arrival times can be implemented in two alternate ways. First is pulse-shape

modeling (template fitting) that includes PBF effects in the templates used to obtain ToAs. The second approach

obtains ToAs using a template that incorporates scattering incorrectly (via an incorrect τ or incorrect shape) but

makes post-facto scattering corrections by using using appropriate terms in a ToA model. The latter approach is made

problematic by chromatic PBFs that lead to non-trivial scalings of scattering-induced delays with frequency.

An example case is for an MSP with DM = 10 pc cm−3 and scattering time τ ≃ 6.2 ns at 1 GHz estimated from the

hockey-stick relation (Eq. 10.16). This gives ζ ≃ 0.018 li3ν
−6/5 for β = 11/3. Multifrequency observations spanning

0.4 to 2 GHz yield ranges of 7:1 and 1200:1 for ζ and τ , respectively, which imply that profiles and ToAs span two

or more of the quadrants identified in Table 6. The degree to which dispersion and scattering delays are mitigated

depends on how carefully systematic PBF envelope effects are dealt with (along with finite-scintle effects as well).

J. Singha et al. (2024) explored scattering corrections on simulated data using an exponential PBF and two alternative

frequency scalings for the scattering time, τ ∝ ν−22/5 (the Kolmogorov inertial subrange value) and τ ∝ ν−4, which

applies to a Kolmogorov medium with a large inner scale or to a monoscale medium with scales a ≫ ld. In their

study, scattered profiles generated over a wide frequency band yielded biased DM estimates when a template devoid

of scattering was applied, as expected, given the positive time shifts imposed by the asymmetric PBF. Bias was

eliminated when the template included scattering, also as expected. We note two issues with the approach used. First,

it is inconsistent to use an exponential PBF and any frequency scaling other than τ ∝ ν−4. Second, while simulations

showed that scattering imposed with an exponential PBF could be recovered by model fitting with an exponential

35 There is also an offset if the template includes scattering with an exponential PBF.
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PBF, application to actual pulses that include scattering by a heavy-tailed PBF would not recover the scattering, as

we have shown. The bias and enhanced random errors due to mismatch between model and actual PBFs is discussed

further in the next section.

12.7. Systematic timing errors from mismatched templates and PBFs

Removal of PBF-shape effects in ToA estimates raises several thorny issues. First, the epoch dependence of PBFs

requires a template that has the PBF for each epoch ‘baked in’ if scattering delays are to be removed perfectly. Second,

both the width and the shape of the PBF are chromatic. The PBF’s characteristic width scales as the pulse broadening

time τ ∝ ν−xτ with xτ ∼ 4. More importantly, its actual shape depends on frequency if the inner scale is finite and

comparable to the diffraction scale ld at any of the observation frequencies. This is more likely at lower frequencies

given the scaling ld ∝ ν2β/(β−2) ∝ ν22/5 for the Kolmogorov inertial subrange. An optimal template therefore needs

to be frequency dependent for this reason as well as to account for the chromaticity of the intrinsic pulse shape (§ 6.3).

Third, while significant prior information is known about scaling laws of pulse broadening from the ISM, uncertainties

in those scaling laws and the effects of variable refraction yield systematic errors in ToA estimates. The last conundrum

is the desireability of using a template that is constant vs. epoch, which guarantees that mismatches with the true

pulse shape at any epoch require post-fitting mitigation.

To assess systematic timing errors, we consider application of Eqs. 12.32-12.42 using model shapes Um and pm to form

a profile model,

Im(t) = amUm(t− tm) ∗ pm(t, τm), (12.46)

that is fitted to a measured data profile, where frequency dependences of all quantities are implicit.

Optimal TOA estimation requires fitting with Um = U and pm = p, to obtain the correct ToA t0, pulse broadening

time τ , and pulse amplitude a to within uncertainties determined by additive noise36. However, both Um and pm will

differ from the true shapes. In practice, this optimal situation is never realized due to imprecision in the knowledge of

either U or p, largely caused by the chromaticity of intrinsic pulse shapes and the epoch dependence of PBFs.

Fitting with Um ̸= U or pm ̸= p yields systematic errors in arrival time and also in the scattering time τm. These errors

propagate into the ToA estimate for t∞ (c.f. Eqs. 3.3 and 12.11) because multifrequency ToAs are used to estimate DM

for extrapolation to infinite frequency and, ideally, there should be a similar extrapolation for scattering delays. As

for characterization of the ISM using the scattering time, its scaling with frequency, τm ∝ ν−x̂τ is also highly affected

by mismatches.

Various methods have been used to model intrinsic profile shapes on a pulsar-by-pulsar basis; they reduce but do not

eliminate the difference between the true and modeled profile shapes at a specific frequency. One method adopts a

model profile equal to a measured high frequency profile (minimally affected by scattering) convolved with a fixed-shape

PBF (such as the one-sided exponential) with a scale parameter τ(ν) ∝ ν−xτ where xτ is either fixed at some value

or also included as a fitting parameter. Given that the exponential PBF is unlikely to be an accurate representation

of the true PBF in most cases, systematic errors should be expected not only in ToAs but also in τ and xτ .

Figure 58 shows the effects of mismatches on the scaling of scattering times with frequency. Simulated Gaussian pulses

with different widths Wu are scattered with a heavy tailed PBF for a value ζ = 0.1 at a reference frequency ν0 and a

scaling ζ(ν) ∝ ζ ∝ (ν/ν0)−2/(β−2). Fitting scattered pulses using an exponential PBF yields values of τ that deviate

from true values by amounts that are frequency dependent. High frequency values for τ are biased high because the

exponential PBF needs to be broader to accommodate the heavy tail of the ‘true’ PBF (left panel). The effect is

exacerbated for larger Wu. The implied scaling laws τ ∝ ν−xτ have exponents (right panel) that are always smaller

than the index of 4.4 if the correct PBF had been used.

Examples of shallow frequency scalings for τ (i.e. xτ < 4) include an average index xτ ≃ 3.44± 0.13 (O. Löhmer et al.

2001) from an analysis of nine strongly scattered pulsars and xτ ≃ 3.4 ± 0.2 for B1933+16 (O. Löhmer et al. 2004).

36 Actual uncertainties also include pulse jitter and the finite scintle effect, but for the sake of discussion in this section we ignore those
distinct contributions.
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Figure 58. Effects of an incorrect PBF: Scaling of the estimated scattering time τ vs. frequency for power-law scattering with
β = 11/3 and a small inner scale li = 0.1 in units where the diffraction scale ld0

= 1 at a reference frequency ν0. The quantity

ζ(ν) = (li/ld0
)(ν/ν0)−2/(β−2) → ζ0(ν/ν0)−6/5 increases with decreasing frequency, shortening the tail of the PBF. Left: τ(ν)

vs. ν showing curves for different intrinsic (unscattered) pulse widths Wu where τ is determined by model fitting the intrinsic
shape scattered with an exponential PBF instead of the true power-law PBF. The dotted line shows the Kolmogorov scaling
∝ ν−4.4 for the inertial subrange. Right: Exponent of the apparent scaling law τ(ν) ∝ ν−xτ .

A wide range of index values above, below, and consistent with xτ = 4.4 were reported by W. Lewandowski et al.

(2013) while low-frequency observations at 118-180 MHz (Z. Wu et al. 2023; A. Filothodoros et al. 2024) show shallow

scalings.

The overall tendency is for shallow scalings to be more prevalent for distant, high-DM pulsars observed at higher

frequencies and for somewhat lower DMs observed at lower frequncies. This might suggest greater departures from

a Kolmogorov spectrum for high-DM pulsars in the inner Galaxy but that cannot account for the shallow scalings

for low-frequency observations. We are inclined to interpret many of these results as due to fitting bias ensuing from

mismatches of adopted and actual PBFs and intrinsic profile shapes. Exponential PBFs used in all of these studies

combined with chromaticity of intrinsic shapes will tend to yield underestimates of the true xτ . In some cases, however,

the underestimates may be real and caused by confinement of the dominant scattering region transverse to the LoS

(J. M. Cordes & T. J. W. Lazio 2001b) rather than being due to a genuine non-Kolmogorov scaling. This latter

interpretation was applied to the scattering seen from J0826+2637 (A. Filothodoros et al. 2024; Z. Wu et al. 2023).

These authors also found that measurements of scintillation structure at higher frequencies yielded xτ = 4.58 ± 0.16

(consistent with the Kolmogorov index xτ = 4.4) while pulse shape modeling for lower-frequency data using an
exponential PBF and a Gasussian pulse shape yielded xτ = 2.7 ± 0.1. This discordance could be due to transverse

scattering confinement, as the authors concluded or it instead may simply be the result of fitting bias. A thorough

discussion of scaling laws, fitting bias, and conclusions about the scattering properties of the ISM is deferred to another

paper (in preparation).
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Part IV. Chromatic leakage, gaussianity, fluctuation spectra, and red
noise assessments

13. CHROMATIC LEAKAGE INTO ACHROMATIC ARRIVAL TIMES AND RESIDUALS

The goals of most, though not all, timing analysis concern achromatic terms in arrival times, such as those due to

gravitational waves or post-Newtonian terms in orbital motions of pulsars in binaries. For these applications chromatic

plasma effects are a nuisance; however, for studies of Galactic structure of ionized gas and for probing very compact,

discrete structures that underlie ESEs, they are a unique source of information.

Chromatic leakage into hoped-for achromatic timing residuals is inevitable. The overriding question is what is its

amplitude relative to achromatic terms and whether they are mitigable. In this section, the removal of chromatic

terms from arrival times is discussed with special attention paid to particular procedures that cause chromatic leakage.

To emphasize leakage effects, we re-visit some of the previous results. The barycentric ToA at frequency ν (where the

delay and Doppler corrections to the topocentric TOA have been made) is expressed similarly to Eq. 12.11, but with

the scattering-averaged DM delay combined with a lump chromatic term and excluding the error term ϵν :

tν = t∞ +KDMDM(t, ν)/ν2 + tC(t, ν), (13.1)

where the dependence on epoch t is shown explicitly.

We again consider ToAs obtained at two frequencies νl,h, with ratio R ≡ νh/νl > 1, and at two epochs tl,h, respectively.

These are the center frequencies of two well separated (non-overlapping) bands. Then D̂M is calculated under the

false assumption that DM is constant and that the tC terms are absent. The achromatic ToA is estimated as t̂∞ =

tνh − νh
−2KDMD̂M, which is in error by an amount,

δt̂∞ = t∞ − t̂∞ = +
KDM

νh2

(
R2

R2 − 1

)
∆DM1,2 +

tC1 −R2tC2

R2 − 1
, (13.2)

where the simplified notation uses DM1 ≡ DM(tl, νl), tC1 = tC(tl, νl) etc. and defines ∆DM1,2 = DM1 −DM2. Ideally

δt̂∞ = 0 but the assumptions underlying Eq. 13.2 lead to non-zero residuals with superposed terms having different

fluctuation statistics, including several lumped together into tC.

Contributions from DM stochasticity: Variations vs. both epoch and frequency (c.f. § 12.1-12.2) yield chromatic errors

in t̂∞:

1. Asynchronous arrival times: The epoch dependence of DM alone (without frequency dependence or contributions

from tC) yields a chromatic error when two epochs are used to calculate DM. Using the DM structure function

DDM(∆t) ∝ (∆t)β−2 (in the inertial subrange for the ISM),

σt∞ ,DM(t) =
KDM

νh

(
R2

R2 − 1

)
D

1/2
DM(th − tl). (13.3)

This contribution vanishes of course when observations are at the same epoch37.

2. Frequency dependent DM: Now including DM chromaticity, same epoch observations (tl = th = t) give a contri-

bution

σt∞ ,DM(ν) =
KDM

νh

(
R2

R2 − 1

)
D

1/2

DM
(0, νl, νh). (13.4)

37 Interstellar Kolmogorov-like DM variations of significance are not expected for time separations less than about one day. Small iono-
spheric contributions vary diurnally and stochastically. Interplanetary contributions will vary with solar elongation and the solar cycle.
Only for lines of sight near the Sun might there be significant variations on sub-day variations.
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Contributions from interstellar refraction and diffraction: The summed contributions to tC(t, ν) =
∑
j tCj(t, ν) include

random, zero-mean and systematic biases that arise from interstellar refraction and diffraction. The chromaticity of

emitted pulses (‘profile evolution’) also contributes but is not explicitly quantified here. The different terms have a

variety of dependences on RF ν and fluctuation frequency f that make their removal problematic. Attempts to do so

have mostly relied on subtracting a single term in the ToA expression with an assumed RF dependence or have made

use of Gaussian process modeling with an assumed or fitted RF dependence. Chromatic fluctuations inevitably remain

in timing residuals with these approaches and that may remain true regardless of the approach. The contributions of

these undesired terms are pulsar and LoS dependent, so they must be managed on a case by case basis.

1. Diffractive pulse broadening (tCτ ): As demonstrated previously, the time delay tCτ from pulse broadening is

typically less than the 1/e broadening time τ . There is a complicated dependence of the ensuing error t∞,τ on

the particular forms of the emitted pulse shape and PBF as well as on the template used for ToA estimation.

While the amplitude and RMS value of t∞,τ cannot be expressed generally, the fluctuations of τ(t, ν) with epoch

will be ‘low-pass’ in form with a characteristic time scale comparable to the RISS time scale ∆tr of order days

or more.

2. Refractive delays (tCτr): The refractive delay τr ≃ d ′θr
2/2c is a consequence of image or ray-path wandering,

differing from the effects of multipath propagation that underly the diffractive delay. The refraction angle θr < θd
for Kolmogorov like media with β < 4 and small inner scales (c.f. Fig. 45-46) and varies on RISS time scales.

The delay τr ∝ θr
2 will vary more rapidly by about a factor of

√
2 but both will have a low-pass spectrum.

3. Refractive error in barycentric ToAs (tCssbc): The SSBC transformation error discussed previously scales linearly

with θr and varies on RISS time scales.

This summary of prominent chromatic effects illustrates that the net chromatic ToA error involves a variety of RF

dependences that are accompanied by a mixture of fluctuation spectra, discussed further in the next section. Mitigating

the effects is unlikely to be optimal in operations on flawed ToAs, at least not with just one or two model terms. The

alternative or complementary approach is to minimize chromatic effects on ToAs to begin with.

14. GAUSSIAN AND NON-GAUSSIAN TIMING FLUCTUATIONS

Timing fluctuations generally comprise Gaussian-like processes (via the central limit theorem) intermixed with those

with non-Gaussian statistics. Contributions to these categories come from effects intrinsic to the pulsar and from

extrinsic propagation effects.

Gaussian elements: Spin stochasticity takes on several forms. Large-amplitude glitches occur sparsely and with

preferred signs, i.e. spinups with ∆fs > 0. Spin noise (aka ‘timing noise’) is a sustained process that tends to be

random-walk like (c.f. §4.1) and, for some cases, is made up of identifiable, discrete jumps in spin frequency or its

derivative. Unlike glitches, these events are much smaller and show both signs. In other objects, individual events

cannot be identified due to lack of statistical sensitivity and possibly due to a high event rate (e.g. many events per

month). Generally, spin noise does not appear to be a Gaussian process for cases with a low event rate while high-rate

objects can be modeled as such. The prominent red noise in J1939+2134 is consistent with a dense random walk

process that is consistent with a Gaussian process.

Rapidly changing ToA errors from pulse jitter, finite scintle numbers from DISS, and radiometer noise are consistent

with Gaussian, white-noise processes. Jitter is largely statistically independent between pulses38, leading to a Gaussian

error distribution when a large number of pulses is averaged, as is usually the case. The same holds for additive noise

and for errors from template fitting. A ToA is usually estimated over a time-frequency block spanning many scintles,

so the CLT applies for the finite scintle effect as well.

38 Correlations between single pulses are seen in CPs in the form of drifting subpulses and mode changes, but these typically decorrelate
after ∼ ten or so spin periods.
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Propagation through the ISM will produce some fluctuations that are Gaussian. Those that do will be associated with

Kolmogorov density variations and those that do not arise from discrete structures that superpose with Kolmogorov

variations. Gaussianity likely holds for DM variations produced by Kolmogorov density fluctuations because DM is

contributed to along most of the path length and there is also averaging over the bundle of ray paths reaching an

observer (§12.2). Variations in the scattering time τ on long time scales will also be Gaussian if refraction is induced

by Kolmogorov-like density fluctuations.

Non-Gaussian elements: Spin variations are non-Gaussian for pulsars that manifest discrete events as glitches or as the

elements of the red noise process. Most MSPs do not show such events except for a few that show glitches. However,

a sizable fraction of MSPs does show red noise consistent with spin noise (G. Agazie et al. 2023c, and as discussed

below).

Emission in pulsar magnetospheres can produce pulse variations other than single-pulse phase jitter. Changes between

pulse-shape modes are consistent with stationary Markov processes in some cases (J. M. Cordes 2013), involving a

small number of discrete states that persist for several to a large number of spin periods39. Arrival time variations

will be clustered in multiple peaks in histograms of ToA residuals if only a small number of state changes (e.g. profile

mode changes with a small set of preferred shapes) occur during an integration time (typically ≲ 1 hr). If many occur,

ToA variations will tend toward a Gaussian process. Fortunately, MSPs show very little such state changes though

there are a few examples in the literature.

Refractive caustics from propagation through discrete plasma structures produce several timing effects that are event-

like in nature. These include (1) strong intensity variations that influence template fitting errors; (2) discrete DM

events accompanied by refraction angle variations; and (3) refractive distortion of pulse broadening functions with

attendant timing offsets, as discussed earlier. Collectively, these effects are associated with the ‘extreme scattering

event’ (ESE) phenomenon40.

ESEs involve plasma lensing effects that have been seen in radio light curves of AGNs, including the original discovery

by R. L. Fiedler et al. (1987) and other notable cases (e.g. K. W. Bannister et al. 2016) and in pulsar timing data

(W. A. Coles et al. 2015; M. Kerr et al. 2018), including the MSP J1939+2134 (B1937+21) (I. Cognard et al. 1993)

and the MSP J1643-1224 that is behind the HII region Sh 2-27 (V. Maitia et al. 2003; S. K. Ocker et al. 2020; H. Ding

et al. 2023). As with the simulations shown in Figures 59 and 60, plasma lensing can be more prominent in timing

signatures than in flux densities. This is particularly the case for low-DM MSPs monitored in PTA programs because

DISS variations can easily mask the lensing’s effect on the intensity. The main point, however is that the episodic

nature of plasma events represent departures from Gaussian statistics that might otherwise prevail.

ESE events seen in intensity time series are accompanied by changes in DM and angle of arrival, as discussed in §12.3,

and by alterations of PBFs discussed in §11.3. Refraction angles θr from a discrete plasma structure scale natively as

ν−2 and the related timing delays scale as ν−2 and ν−4, respectively, and thus match or nearly match those from DM

delays and scattering. However, time delays along propagation paths where diffraction and refraction both occur will

depart from these scalings.

The effects of a plasma lens are demonstrated in a simulation that also includes Kolmogorov fluctuations. Figure 59

shows simulated intensity slices and histograms. In the top row the intensity trough is easily seen amid the scattering

from a screen with ϕFd = 1 rad but is not obvious in the bottom panels where lensing is combined with a stronger

screen having ϕFd = 5 rad. The intensity histogram for the first case shows a strong departure from the exponential

form expected without the lens. For the stronger diffraction screen, the histogram is consistent with an exponential

except for depletion at intensities about 13 times the mean.

Figure 60 shows the resulting images, PBFs, and arrival times obtaind by ray tracing. The simulation parameters

are approximately match a pulsar with DM = 20 pc cm−3 combined with a plasma lens with a small DM depth of

5× 10−5 pc cm−3. The first panel shows δDM(t) and the other three panels show the resulting changes in (1) angular

39 State changes discussed here are changes in pulse shape or in pulse fluctuations. They do not refer to objects that show transitions
between radio and X-ray emitting phases (e.g. B. W. Stappers et al. 2014; M. C. Baglio et al. 2023).

40 These events are more refractive than scattering (diffractive) in nature, so the term is a misnomer.
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size and location of the scattered image (second panel from top); (2) the intensity modulation ‘gain’ and image axial

ratio in the third panel; and (3) the timing perturbations (bottom panel). Note that the timing perturbations as

shown exclude DM delays and thus represent extra variations that are a consequence of angular broadening and

angular wandering of the image.

Figure 61 shows how the image shape and location and the corresponding PBF varies between 16 locations across the

observation plane. Images are well centered on the direct line of sight except at locations near the plasma lens. PBFs

maximize at t = 0 for most cases but dramatically shift to larger times when the lens is intersected.
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Figure 59. Simulated effects of combined scattering and plasma lensing on a pulsar’s intensity. Left panels: the apparent
intensity plotted against a slice across the observation plane. Right panels; histograms of intensities across the entire 2D
observation plane. Top row: for a weak scattering screen with ϕFd = 1 rad. Bottom row: for a stronger screen with ϕFd = 5 rad.
Intensities are normalized to a mean of unity. The simulated data were produced by evaluating the Fresnel-Kirchhoff diffraction
integral for a phase screen that includes diffraction and a Gaussian plasma lens. The simulation method is described in § E.
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Figure 60. Results for a screen with Kolmogorov refractive variations combined with a plasma lens. Quantities are plotted
vs. position along the screen plane that passes through the plasma lens at X = 0. Top frame: DM plotted vs. position in the
observation plane. Second from top: angular size θFWHM and centroid refraction angle θr. Third from top: Geometrical optics
gain G and image axial ratio Gy/Gx. Bottom: Time delays: the scattering time td is determined by the width of the image
while the refraction time tr includes the offset of the image from the direct path, which is substantial for positions on either side
of the direct path (X = 0). Lengths are measured in Fresnel scale units, rF = (λD/2π)1/2 ∼ 1011 cm.
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at 16 locations along the observation plane, showing their variable shapes and offsets. Right: the corresponding PBFs and mean
delays.
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15. FLUCTUATION SPECTRA OF TIMING DELAYS AND RESIDUALS

The numerous processes already discussed contribute to the net fluctuation spectrum of timing residuals. Some have

white noise signatures while others have red spectra with power concentrated at lower frequencies. We distinguish

between a red power-law spectrum ∝ f−X that extends to frequencies less than T−1 (where T is the length of a time

series) and a ‘low-pass’ spectral form that is flat and then declines for f greater than a bandwidth B. Red power-law

processes, such as pulsar spin noise and the GW stochastic background, yield increasing timing residual variance as T

increases given the rise in spectral amplitude at lower frequencies. By contrast, processes with low-pass spectra have

constant variance for T ×B > 1, examples of which are the ‘white’ noise processes41 discussed earlier: template fitting

errors, jitter, and the DISS finite scintle effect. Other interstellar effects also approximately show the low-pass form.

Here we summarize the spectral models for the salient noise processes discussed in previous sections.

15.1. White noise processes

Radiometer noise and jitter: Signal-to-noise dependent timing errors from radiometer noise (∆tS/N) are uncorre-

lated for ToAs obtained from profiles computed from independent sets of pulses. The same is true for jitter er-

rors (∆tJ). Across radio frequency, they differ because RN errors are uncorrelated between non-overlapping fre-

quency channels while jitter is highly correlated. In the time and RF domains, the cross correlations are then

⟨∆tS/N(ti, νk)∆tS/N(tj , νl)⟩ = σt
2
S/N

δijδkl and ⟨∆tJ(ti, νk)∆tJ(tj , νl)⟩ = σt
2
J
δij . The ensemble average fluctuation

spectra are thus constant in fluctuation frequency but chromatic in radio frequency ν via the noise temperature,

receiver characteristics, and pulse chromaticity,

SS/N(f, ν) = SS/N0
(ν) and SJ(f, ν) = SJ,0(ν). (15.1)

The spectral coefficients equal the time-domain variance divided by the Nyquist frequency, fNy = fcadence/2, where

fcadence is the rate of TOA sampling, e.g. ∼ 10 cy yr−1. The S/N contribution is uncorrelated in both epoch and

frequency42 so the RMS error for at two frequency measurement is of the form σt∞ ,W =
√
R4σ2

2 + σ2
1/(R

2 − 1), where

σ1,2 are the RMS errors at the two frequencies, which generally differ. The spectral level for ∆tS/N is affected by

the variable signal strength of the pulsar caused by DISS, RISS, and caustics from plasma lensing. Jitter is highly

correlated across frequency, giving a different form, σt∞ = R2σJ/(R
2 − 1) where σJ is the error in an individual

measured ToA.

Finite scintle effect: The rapid shape changes of PBFs from finite numbers of scintles yield a ToA spectrum that is

technically of low-pass form,

SDISS(f, ν) = SLP(f,Bfse, ν), (15.2)

where the bandwidth Bfse ≃ ∆t−1
d is roughly the inverse of the DISS time scale, i.e. Bfse ≃ 1 mHz (103 s/∆td). On

a practical basis, however, ToAs are usually obtained from profiles with integrations T ≳ ∆td so the ToA error from

this effect is effectively independent between ToAs. Consequently, the spectrum for the residual time series from this

effect is essentially white,

SDISS(f, ν) = Sfse,0(ν), (15.3)

but it is strongly dependent on RF and T (§ 12.5.2). The spectral coefficient is Sfse,0(ν) = σt
2
DISS

/fNy.

15.2. Achromatic red noise with power-law spectral components

Spin noise: Stochastic spin variations, discussed in § 4.5 (as opposed to glitches, which are large discontinuous events),

display red spectra with a range of spectral indices among pulsars,

Sspin(f) = Sspin,0f
−Xspin , 4 ≲ Xspin ≲ 6. (15.4)

41 Like all real-world processes, these do not have spectra that are strictly white but are simply flat over a wide bandwidth.
42 Radiometer noise is uncorrelated between different time samples and frequency channels of a multichannel system, for example.
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Referring back to § 4.5, some pulsars reveal that the spin noise comprises the superposition of individual events in the

spin frequency fs or its derivative ḟs. Step functions in either of these yield corresponding spectra scaling as f−4 or

f−6, respectively.

GW stochastic background (GWSBG): The detected GWSBG (G. Agazie et al. 2023a; EPTA Collaboration and

InPTA Collaboration et al. 2023; D. J. Reardon et al. 2023a) is likely the superposition of GWs from a population of

supermassive black-hole binaries, that appears as a power-law like spectrum for arrival-time perturbations with the

possibility of flattening at the lowest frequencies sampled by the T ≃ 15-20 yr data sets. The angular correlation

of timing residuals between pulsars results from GWs affecting spacetime near the Earth (R. W. Hellings & G. S.

Downs 1983). However, GWs passing through each pulsar’s location contribute timing variance equal to that of the

Earth-term GWs that is uncorrelated between pulsars. The pulsar-term GWs therefore contribute power-law noise to

timing residuals that we represent with the same form as spin noise,

SGW(f) = SGW,0f
−Xgw , Xgw ≃ 4 to 4.3. (15.5)

Asteroid noise: The spectrum of timing noise produced by an asteroid belt around a pulsar (§ 4.7) is typically shallower

than that produced by GWs or spin noise, but steeper than that produced by interstellar processes:

Sast(f) = Sast,0f
−Xast , Xast ≃ 3 to 3.67. (15.6)

The spectral index Xast = (2βa +7)/3, where βa is the index in the radial distribution of asteriods, fa(a) ∝ aβa−1. Re-

alistic values of βa include βa = 1, corresponding to a uniform distribution in orbital radius, and βa = 2, corresponding

to a disk with a uniform surface density of asteroids. These correspond to Xast = 3 and Xast = 11/3, respectively.

15.3. Chromatic red noise with low-pass cutoffs

Most of the interstellar effects comprise time-correlated noise with stationary statistics, yielding a variance contribution

with little or no dependence on the length of time series T if T is greater than the correlation time. The exception is

DM variations, which are sensitive to the full range of scales in electron density and for which an outer scale ∼ 1 pc

would require T ≳ 104 yr. In all cases, however, the spatial averaging from multipath propagation, which underlies the

chromaticity of DM, yields smoothed variations in DM and other quantities with a time scale of order the refractive

scintillation (RISS) time scale ∆tr (§9.3). This truncates fluctuation spectra for frequencies f ≳ ∆t−1
r . We account

for this low-pass filtering with a factor SLP(f,B). It has an unspecified form but is approximately flat and rolls off for

frequencies f ≳ B with B ∝ ∆t−1
r .

Dispersion measures: A single propagation path through the ISM yields DM(t) with structure function DDM(∆t) ∝
(∆t)β−2 (in the inertial subrange) for a medium with a power-law wavenumber spectrum. This corresponds to a red

fluctuation spectrum SDM(f) ∝ f−(β−1) β=11/3→ f−8/3. Ideally, DM(t) is estimated at each epoch and dispersion delays

are removed from arrival times. However, the multifrequency methodology used for DM estimation combined with

multipath propagation introduces the low-pass factor into the spectrum,

SDM(f, ν) ∝ f−XdMSLP(f,BDM, νl, νh), XdM = β − 1 (15.7)

with a fluctuation bandwidth dependent on the frequency range [νl, νh] used, over which ∆tr varies as ν−β/(β−2) β=11/3→
f−11/5. The highest frequency νh yields the fastest RISS so the spectrum will extend to BDM ∼ ∆t−1

r (νh). An example

(simulated) spectrum is shown in J. M. Cordes et al. (2016, Fig. 5).

DMs from asynchronous arrival times: The TOA error from asynchronous dual-frequency measurements scales as

∆DM = DM(t1, νl) − DM(t2, νh). For small |t2 − t1| this difference acts as a derivative. From the Fourier derivative

theorem this yields a factor of f2 that multiplies the spectrum of DM. Including the low-pass factor, the spectrum is

S∆DM,async(f, t1, t2) ∝ f−(β−3)SLP(f,B∆DM). (15.8)

For β = 11/3 the spectrum is shallow, S∆DM,async ∝ f−2/3 for f ≪ B∆DM ≃ 1/∆tr(νh).
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Frequency dependent DMs: Scattering cone averaging is responsible for the radio frequency dependence of DM(t, ν),

so the DM increment ∆DM has a low-pass fluctuation spectrum,

SDM(f, νl, νh) ∝ SLP(f,BDM, νl, νh), (15.9)

with BDM ≃ ∆tr(νh)−1. The simulated spectrum shown in J. M. Cordes et al. (2016, Fig. 5) demonstrates that the

spectral amplitude decreases as νl → νh and the bandwidth increases with larger νh because ∆tr is smaller at higher

radio frequencies.

Variations in scattering and refraction parameters: Relevant quantities here are the scattering time τ , the scintillation

bandwidth ∆νd ∝ τ , the DISS time scale ∆td, and the RISS time scale ∆tr. The refraction angle θr = k−1∇⊥ϕ(x)

has a wavenumber spectrum Pθr
(q⊥) = q⊥

2Pϕ(q⊥, 0) related to but less steep (by virtue of the gradient) than either

the phase spectrum Pϕ or the spectrum for the electron density Pδne
. Sampling the refraction angle θr across the

observation plane gives a temporal spectrum Sθr(f) ∝ f−(β−3) multiplied by the low-pass factor. AoA variations thus

have a shallow spectrum for a Kolmogorov medium, Sθr(f) ∝ f−2/3.

Refraction from power-law media varies on the refraction time scale ∆tr; refraction alters the shape of the ray-

path bundle and thus affects all multipath effects (§ 11.3). Stationary fluctuations with a characteristic bandwidth

Br ∼ 1/∆tr (i.e. lowpass in form) are expected where Br is RF dependent because ∆tr ∝ ν−11/5 so Br ∝ ν11/5.

For a Kolmogorov-type medium, refraction delays are smaller than τ , so we discuss the latter first. As indicated in

§ 12.6.2, ToA delays (and thus timing residuals) are related to but not equal to the scattering time τ and the RF

dependence of ToA delays is nontrivially related to that of τ because it depends on the methodology used to estimate

ToAs while addressing the scattering delay. We consequently write the spectrum for timing perturbations caused by

epoch dependence of τ in the low-pass form,

Sτ (f) = Sτ,0SLP(f,Bτ , ν). (15.10)

Angle of arrival (AoA) variations: Refraction of the ray-path bundle causes a refraction delay ∆tAOA ≃ d ′θr
2/2c

that has a shallow spectrum. A detailed treatment for a thin screen and Kolmogorov spectrum (β = 11/3) yields a

refraction-angle spectrum (Appendix G), extending to BAoA ≃ ∆t−1
r ,

Sθr(f) =
1√

2(2π)1/6
Γ(1/3)

Γ(5/6)

(λ2re)
2 SM

vx

(
f

vx

)−2/3

, f ≲ BAoA ∼ ∆t−1
r . (15.11)

Note that low-DM pulsars observed at high frequencies have small refraction times, ∆tr ≲ few days, so the spectrum

extends to ≳cy yr−1. With a typical observing cadence ∆tobs ∼ 1 month, the spectrum is aliased to form essentially a

flat spectrum. In that situation, a low-pass spectral form with bandwidth ∼ ∆t−1
obs would be appropriate,

Sδt,AOA(f) = Sδt,AOA,0SLP(f,∆t−1
obs, ν). (15.12)

The spectrum of θr
2 is the convolution of Sθr(f) with itself and scales as f−1/3 for a Kolmogorov spectrum and

generally as f−(2β−7) for 3 < β < 4 with a maximum at a small wavenumber determined by a combination of the

inner and outer scales. Thus we expect this contribution to ToA fluctuations to scale as

Sδt,AOA(f) ∝ f−1/3 for f ≲ BAoA. (15.13)

15.4. Chromatic bandpass noise

AoA variations introduce another timing error related to the translation of topocentric ToAs to the solar system’s

barcyenter. If the assumed pulsar direction n̂ differs from the actual, refracted direction (R. S. Foster & J. M. Cordes

1990), the ToA error has the form (assuming for simplicity a circular orbit), ∆tAOA,SSBC ≃ θr(rE/c) cos[ΩE(t − tp)],

where rE and ΩE are the Earth’s orbital radius and orbital frequency and tp is an offset related to the pulsar’s direction.
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The ensemble average spectrum is a low-pass form (for θr) convolved with a delta function from the sinusoidal variation,

yielding a shift of the low-pass spectrum

Sδt,SSBC(f) = SAOA,SSBC,0SLP(f − ΩE/2π,Br, ν). (15.14)

The bandwidth of the low-pass factor is determined by the refraction time scale, Br ≃ (∆tr)
−1. For low-DM pulsars

∆tr ≪ 1 yr so Br ≫ 1 cy yr−1 and the orbital shift is barely discernible. Stronger scattering from high-DM pulsars or

even low-DM pulsars observed at low frequencies < 1 GHz will have longer RISS time scales; the resulting narrower

bandwidths make the orbital shift more manifest and thus the spectrum departs even more from a power-law form.

The sampling cadence Tcadence of a PTA program combined with the refraction time scale ∆tr and total time span T

determine whether ∆tAOA,SSBC is manifested as chromatic white noise, a low-pass spectrum, or a bandpass spectrum:

1. White noise: ∆tr < Tcadence ≪ T : When refraction angle variations are undersampled, they are statistically

independent, corresponding to data with a white-noise representation. This regime applies to low-DM pulsars

or high frequency observations.

2. Correlated noise: Tcadence < ∆tr < 1 yr ≪ T : A longer refraction time that is still small compared to one

year yields ∆tAOA,SSBC that appears as red noise with a low-pass form. (Moderate DM pulsars observed at

∼ 1 to 2 GHz frequencies.)

3. Bandpass noise: Tcadence < 1 yr < ∆tr ≪ T : Refraction times longer than about one year allow the coherence

of the cosine term in ∆tAOA,SSBC to manifest. (Large DM pulsars or low frequencies.)

Figure 62 shows results from a toy model for refraction angles that illustrate the white noise and bandpass noise

regimes. Refraction angles were generated by convolving white noise with a Gaussian kernel with width equal to ∆tr.

Time series for ∆tAOA,SSBC are shown in the top panels with and without the cosine factor to demonstrate its effect.

Spectra are shown in the bottom panels.

Timing programs require measurements over wide frequency ranges to enable estimation of plasma propagation delays.

These ranges can cut across the regime boundaries shown in the figure. The lowest-DM pulsars are largely immune to

crossover because the barycentric delay will appear as chromatic white noise at all relevant frequencies. Moderate-DM

pulsars up to DM = 100 pc cm−3 will show temporal correlation at low frequencies and white noise at high frequencies.
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Figure 62. Time series and spectra for the refraction angle θr(t) and the barycentric delay ∆tAOA,SSBC. Simulated refraction
angles with 1 mas RMS comprise 5000 samples over 50 years that yield RMS(∆tAOA,SSBC) ∼ 0.27µs for a direction in the
ecliptic plane. Refraction angles were simulated as a process with a Gaussian correlation function that captures the essential
features but is only a coarse approximation to a Kolmogorov medium. Left: undersampled variations in refraction angle with
∆tr = 0.05 yr ≪ Tcadence yield uncorrelated samples in ∆tAOA,SSBC and a white noise spectrum. Right: a longer refraction time
∆tr = 1 yr allows the coherence of the cosine term in ∆tAOA,SSBC to be manifested in the bandpass spectrum.
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Figure 63. Plot showing regimes for the noise character of the stochastic barycentric correction delay. As a function of
observation frequency, the DM corresponding to equality of the refraction time scale ∆tr with a specified test time Ttest is
shown. Two test values correspond to observation cadence (7 d and 30 d) and another corresponds to the yearly period of the
cosine in the delay expression.

Figure 63 shows the noise regimes in the DM-ν plane where the lines correspond to values of DM where ∆tr = Ttest
with values for Ttest equal to representative observing cadences of 7 and 30 d and the yearly oscillation period of the

barycentric delay.

Figures 62 and 63 illustrate temporal aspects of the barycentric delay and their dependence on DM and radio frequency.

The RMS refraction angle scales as ν−49/30τ1 (where τ1 is the scattering time at 1 GHz, c.f. Table 4). For a specific

pulsar and epoch, the barycentric delay (and refraction angle) will vary differently from the ν−2 frequency dependence

of the DM delay and thus will not be removed without an additional chromatic term in the fitting function at each

epoch.

15.5. Intrinsic pulse shape variations

The simplest summary of intrinsic pulse profiles is that large-N pulse averages are epoch independent but chromatic.

Pulsars that show state changes between profile shapes (‘mode changes’) require N to be large enough to average

over mode changes. The average profiles of pulse sequences for an individual mode are consistent with having epoch

independent shapes. A notable exception to epoch independence is the MSP J1713+0747 that showed a sudden change

in shape that was both chromatic and time dependent as it relaxed back to its original shape after about two years (H.

Xu et al. 2021; J. Singha et al. 2021; R. J. Jennings et al. 2024b). These changes lend themselves to a description in the

time domain rather than in Fourier-space. Timing residuals nonetheless show variations on time scales comparable to

those of GW perturbations in the nanohertz band that must be carefully mitigated. It is possible that smaller events

like those in J1713+0747 data are also present. Collectively, if frequent enough, they could produce variations not

unlike those associated with spin noise. Indeed, profile changes associated with changes in orientation or structure of

the magnetosphere might reflect torque events that would produce spin noise.

15.6. Instrumental discontinuities

It is inevitable that changes in instrumentation occur during multiyear timing programs. These can involve any

elements along the signal path from the feed antennas to the analog to digital converters. Discontinuities or jumps

also occur in the synchronization of observatory clocks to UTC. Pulsar timing analyses take these (mostly) known

jumps into account but there are certain to be residual effects. Discontinuities in arrival times occurring at random

epochs correspond to random walks in the residuals that have an f−2 spectral signature (§ 4.3). If these are due to
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clock offsets, the spectrum is achromatic. But jumps in imperfect polarization calibration are chromatic (e.g. A. F.

Rogers et al. 2024) and would have an f−2 fluctuation spectrum.

15.7. Aliasing of fluctuation spectra

Figure 64 (left panel) shows schematically the integration time and cadence for typical PTA data sets where an

integration time Tint is used to obtain a TOA at epochs separated by an interval Tcadence. The Nyquist frequency is

fNy = 1/2Tcadence and Nyquist sampling corresponds to Tcadence = Tint/2.

PTA data are grossly undersampled because Tcadence ≫ Tint due to telescope time constraints combined with choices

about how target signals (e.g. GW perturbations) can be sampled. The corresponding schematic spectrum (right

panel) shows the unaliased and aliased frequencies for this situation and indicates which frequencies are aliased into

the Nyquist band. The integration time for typical PTA data sets Tint ∼ 0.5 hr corresponds to a bandwidth for TOA

variations frolloff = 1/Tint ∼ 0.24 mHz (HWHM), which happens to be much larger than the frequency range of GW

signals thought to be strong enough to detect with PTAs.
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Figure 64. Left: Sampling of pulsar timing data showing the integration-time interval Tint at each epoch and the separation Tcadence

between epochs (‘cadence’) . Right: Schematic spectrum showing the stop band where low frequencies are attenuated by the finite data span

T , the Fourier band of unaliased frequencies below the Nyquist frequency, the aliased band, and the rolloff band related to the bandwidth

of each sampled TOA for frequencies f ≳ fmax ∼ T−1
int .

For typical PTA data, the aliasing is severe. We show that it is inconsequential for steep power laws but can be

important for chromatic leakage into timing residuals by interstellar delays. Let [0, fNy] be the range of frequencies

into which all spectral amplitudes are mapped. True frequencies in this interval are unaliased but the estimated

spectrum S(f) for f ∈ [0, fNy] receives contributions from

ftrue =

f2jfNy − f j = 1, 2, . . . , jmax

2jfNy + f j = 1, 2, . . . , jmax

(15.15)

with jmax ∼ (fmax − fNy)/2fNy. The aliased spectrum is (e.g. J. W. Kirchner 2005)

Sa(f) = S(f) +

jmax∑
j=1

[S(2jfNy − f) + S(2jfNy + f)] . (15.16)

Figure 65 shows examples of power-law spectra spectrum S(f) ∝ f−X with spectral indices X relevant to timing

fluctuations from interstellar processes, spin noise, and GWs. For most of these cases, distortion by aliasing is minimal,

becoming significant only for shallow spectra with X < 2. The apparent spectral index Xa (also shown in the legend)
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departs significantly from X for X = 5/3 and especially for X = 2/3 where the aliased spectrum is nearly flat with

Xa = 0.04. This last case applies to chromatic leakage of DMs obtained from asynchronous arrival times, which are

relevant to much of the PTA used to report discovery of the stochastic GW background. The X = 2/3 case also

applies to refraction and the transfer of ToAs to the SSBC.
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Figure 65. Examples of power law spectra S(f) ∝ f−X that extend to 1.7 × 10−3 Hz (dashed lines) but are aliased into the Nyquist

band, f ≤ fNy = 2× 10−7 Hz and distorted (solid lines). The aliased spectra have apparent spectral indices Xa evaluated at f = 1 cy yr−1,

as indicated in the legend.
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15.8. Example spectra for four MSPs

To illustrate fluctuation spectral shapes and the differences between pulsars, we show schematic spectra for four

exemplar MSPs. They are chosen to represent the span of conditions encountered across the MSP population, including

those with predicted low and high noise variance from the neutron star spin or the ISM along the LoS.

Spectra display a subset of the effects described in the paper in order to highlight the more prominent effects in

comparison to the red noise from the stochastic GW background. Spectra are shown for 30-yr data sets, about 50%

longer than typical data sets for MSPs that dominate PTA sensitivity to GWs.

J0509+1856 (P = 4.06 ms, DM = 38.3 pc cm−3): This pulsar shows large white noise due to its relatively wide pulse

and pulse jitter. However, it is predicted to have low spin noise and will contribute significantly to GW detection

sensitivity in multi-decade long data sets.

J1903+0327 (P = 2.15 ms, DM = 297.5 pc cm−3): This relatively weak, large-DM pulsar shows large scattering

broadening of its pulse. Consequently it will never contribute to GW sensitivity but it is an important object for

demonstrating ISM effects on timing precision (e.g. A. Geiger et al. 2025).

J1909−3944 (P = 2.95 ms, DM = 10.4 pc cm−3): This is one of the best MSPs used in PTAs owing to its narrow

pulse. It contributed significantly to the detection of the GWSBG reported in 2023.

J1939+2134 (B1937+21) (P = 1.56 ms, DM = 71.02 pc cm−3): This bright MSP has a narrow width, like

J1909−3944, and would be the best MSP for PTA work were it not for its very strong, achromatic red noise from spin

fluctuations (or possibly from asteroid noise.)
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Figure 66. Example noise spectra based on predicted contributions from white noise, spin noise, and ISM fluctuations for four
pulsars. The spectra are based on time series spanning T = 30 yr and are shown as

√
SR(f)/T , where SR(f) is the spectrum

of timing residuals, obtained by multiplying the prefit spectrum by the transmission function. The GW stochastic background
(green) is compared with the total noise spectrum both before (red) and after (cyan) mitigation of interstellar effects. It is
assumed that mitigation reduces the spectral contribution by 10%. Top left: J0509+1856 has a wider pulse than the other
three MSPs, so its template fitting error is the largest by a factor ∼ 15; Top right: J1903+0327 is a high DM pulsar with a
discernible scattering tail on its pulse shape, so its noise spectrum even after 10% mitigation is dominated by interstellar noise;
Bottom left: J1909-3744 is a low-DM pulsar with a narrow pulse; it has a relative high ḟs so its predicted spin noise contributes
significantly to its overall noise spectrum. Bottom right: J1939+2134 (B1937+21) is dominated by achromatic red noise from
spin variations (or possibly orbital noise from an asteroid belt around the pulsar.)
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16. RED NOISE ASSESSMENT OF MSPS IN PTAS

Among the set of papers announcing the identification of the nanohertz GW background is a description of the

properties of the NANOGrav PTA as a GW detector (G. Agazie et al. 2023c). Similar detector properties were

presented for the Australian PPTA (D. J. Reardon et al. 2023b), the Chinese PTA (H. Xu et al. 2023), the European

PTA ( EPTA Collaboration et al. 2023) and the Indian PTA (A. Srivastava et al. 2023).

Table 2 of G. Agazie et al. (2023c) presents characterizations of red noise in the timing residuals of the 25 MSPs for

which it could be identified out of the 67 MSPs comprising the NANOGrav PTA. Each MSP has an attributed power

spectrum of the form Arn(f/fref)
−γrn with Arn in dimensionless units and fref = 1 cy yr−1 (Appendix B). Mean values

for Arn range from ∼ 10−14.9 to 10−11.9 and mean values for the frequency indices γrn range from 0.5 to 5.2. When

the contribution of the GW stochastic background is taken into account, 12 out of the 25 MSPs show excess red

noise while the others do not (within errors). In the same dimensionless quantity, the strength of the background is

Agw = 2.4+0.7
−0.6 × 10−15 if the frequency index is held fixed at γgw = 13/3 or Agw = 6.4+4.2

−2.7 × 10−15 for a best-fit index

γgw = 3.2 ± 0.6.
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Figure 67. Red noise analysis of 25 pulsars presented in Table 2 of G. Agazie et al. (2023c) for NANOGrav’s 15 yr dataset.
Top panel: the dimensionless spectral amplitude Arn. Amplitude ranges for the GW stochastic background are indicated for
two cases: (dark blue) the GW frequency index was held fixed at γgw = 13/3 and (light blue) the index was fitted for along
with the amplitude. The wide range of amplitudes for ISM and spin noise is indicated in red shading. The red lines indicate
a preliminary analysis of the ISM fluctuations from frequency-dependent DMs, errors in the translation of ToAs to the SSBC,
and variations in scattering time τ . The heavy red line is based on the mean τ(DM) relation and the thin lines are the ±σlog10 τ

departures from the mean. The high DM MSP J1903+0327 is indicated (rightmost black circle with error bar on the top and
bottom frames) as an example where ISM fluctuations clearly dominate its red noise, consistent with the small γrn < 4 spectral
index. Bottom panel: frequency index γrn with ranges for spin noise, ISM effects, and GWs indicated.

Fig. 67 shows the amplitudes and indices for the 25 pulsars plotted against their dispersion measures. In the top panel,

the range of values for Agw quoted in G. Agazie et al. (2023c) are shown as blue bands. Also shown as a red band is the

wide range estimated for red noise from interstellar propagation effects and spin noise. Red lines show the estimated

range for several combined interstellar effects that produce red noise with a low-pass spectral form as discussed in § 15.

The three lines are based on the τ(DM) relation of Eq. 10.16 including the uncertainty σlog10 τ = 0.76 for τ .
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To calculate the range of interstellar contributions, we include the variability with epoch of ToA variations associated

with: (1) the scattering time τ ; (2) the frequency dependence of DM; and (3) the effects of refraction on the translation

of ToAs to the SSBC. All three quantities vary roughly on the same time scale ∆tr as RISS. The first two effects

dominate at large DMs but are subdominant at low DMs where refraction produces a bigger effect on ToAs.

Variations in the scattering time τ are represented as δτ ∼ ϵττ with ϵτ = 0.1, in accordance with the fluctuations

seen in the high-DM MSP J1903+0327 (e.g. time series in Fig. 44 and labeled in Fig. 67). We also assume that only

a fraction mτ = 0.2 of δτ is manifested in arrival times (c.f. discusssion in § 12.6.2), yielding σtτ = mτ ϵτ = 0.02τ .

Variations in τ at the lower frequency(ies) used in the timing analysis dominate the net error in the DM-corrected

ToA. We conservatively evaluate τ at ν0 = 1.5 GHz because we emphasize the range at larger values of DM, such as

DM = 297 pc cm−3 for J1903+0327, for which this frequency would be appropriate. Lower frequencies are used for

most MSPs monitored in PTAs, so we underestimate the role of this effect at low DMs, but it is subdominant to the

refraction effect anyway.

For the contribution from frequency dependent DMs, we use Eq. 12.29 with the scattering measure calculated form

τ (c.f. Table 4, item 1). We assume a uniform medium and β = 11/3 that gives Gβ = 1/
√
β − 1 →

√
3/8 and use

νh = 2 GHz with R = 1 (a 2:1 frequency range), giving It∞(R, β) ≃ 1.5.

Finally, the RMS refraction angle θr is given in terms of τ by item 8 of Table 4, which is the refraction angle produced by

length scales equal to the width of the ray-path bundle (i.e. scattering cone) of multiple propagation paths. Geometrical

optics for a fixed plasma cloud would yield θr ∝ ν−2 but the scattering cone gets larger at lower frequencies, yielding

a net Kolmogorov scaling θr ∝ ν−49/30. This differs from the native refraction scaling and also from the dispersion

scaling ∝ ν−2DM. The ToA variation is given by Eq. 12.31. We ignore the sinusoidal dependence (see discussion in

§ 12.3) but assume that DM fitting removes 50% of the ToA variation and we use a nominal 1.5 GHz frequency for

this term.

Calculation of the net dimensionless parameter for ISM effects, Aism, uses Eq. B9 after combining the three effects in

quadrature to yield σt,ism. The RISS time scale (Item 13 in Table 4) is used to calculate the bandwidth of the combined

low-pass process as BL = 1/∆tr, which is a function of radio frequency ν and epoch. For the shape of the low-pass

spectrum we use a Gaussian function, SL(f) = exp
[
−(f/2BL)2

]
. The ISM A parameter is necessarily a function of

fluctuation frequency and for slow RISS with ∆tr ≫ 1 yr, the low-pass factor SL(f = fref = 1 cy yr−1) ≪ 1. This

becomes important for large-DM pulsars but is not a large effect for the DM range shown in Fig.67.

Armed with the analysis of the red noise properties of the general pulsar population in § 4 and the fluctuation spectra

of chromatic processes in § 12, we assess the dominant cause for red noise in each of the 25 objects.

Table 7 presents assessments for the 25 MSPs analyzed in G. Agazie et al. (2023c). Columns 2-4 give the DM and

spin parameters, which pertain to interstellar and spin noise effects, respectively. The NANOGrav 15 yr values for

Arn and γrn are repeated here in columns 5-6 from Table 2 of (G. Agazie et al. 2023c) and the spin noise analysis

of § 4 is presented as Arsn in column 7 and its ratio to A from the NANOGrav analysis in column 8. The red-noise

classification based on both analyses is in column 9. The overall assessment in column 10 combines factors based on

interstellar processes combined with the red noise and spin analyses. This also involves inspection of time series for

DM and timing residuals given in G. Agazie et al. (2023c). The assessments in the final column Table 7, though based

in part on these quantitative criteria, are ultimately subjective in nature.

We use the following criteria to assign a pulsar to one of three classes:

1. GW background: Dominance by the stochastic background is indicated if the timing residuals yield Arn ∼ Agw

and a steep power is identified with γrn ∼ 4. ISM effects can be ruled out on this basis and also if the pulsar’s

DM is small (e.g. ≲ 20 pc cm−3), which implies chromatic leakage is small. Further corroboration follows if the

predicted red spin noise is smaller than observed.

2. Red spin noise: If a steep spectrum γrn ≳ 4 is indicated and the measured red noise amplitude is significantly

larger than Agw, dominance by spin noise is likely (or possibly orbital noise from asteroids, though there is little
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precedence for conclusive evidence for asteroid belts, only plausibility). Low-DM lines of sight will produce only

weak or negligible contributions and they will not yield steep spectra.

3. Interstellar noise leakage: Interstellar red noise from refraction is indicated for large-DM pulsars if the

frequency index γrn ≲ 2 and if Arn > Agw. ISM effects give native frequency indices γism ranging from 2/3 to

5/3 for a Kolmogorov spectrum, the smallest of these for non-contemporaneous frequency observations for DM

estimation or for the effect of angular wandering on barycentric ToAs. Aliasing flattens the noise process for

γism < 1 (c.f. Fig. 65).

Table 7. Individual RN model parameter values and 68% credible intervals for pulsars with significant detections of
RN. Note that Arn is expressed in strain amplitude to match Agw from the GW analysis; both are unitless.

NANOGrav 15yra Spin noise analysis

Pulsar DM P Ṗ log10 A
15 yr
rn γ15 yr

rn log10 Arsn

Arsn

Agw

RN
type

Overall
assessment

(pc cm−3) (s) (10−20 s s−1)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

B1855+09 13.3 0.0054 1.78 −14.0+0.3
−0.4 3.9+1.0

−0.8 -14.9 0.56 gw gw
B1937+21 71.0 0.0016 10.50 −13.6+0.1

−0.1 4.0+0.4
−0.3 -13.6 10.65 rsn rsn

B1953+29 104.5 0.0061 2.97 −12.8+0.2
−0.3 1.8+1.1

−0.7 -14.7 0.89 gw ism
J0030+0451 4.3 0.0049 1.02 −14.4+0.4

−0.5 4.6+1.1
−0.9 -15.1 0.33 gw gw

J0437−4715 2.6 0.0058 5.73 −13.4+0.2
−0.2 0.5+0.6

−0.4 -14.3 1.92 rsn ism?
J0610−2100 60.7 0.0039 1.23 −12.9+0.3

−0.5 4.1+2.0
−1.9 -14.9 0.49 gw rsn

J0613−0200 38.8 0.0031 0.96 −13.8+0.3
−0.3 3.1+0.9

−0.7 -15.0 0.45 gw gw?
J1012+5307 9.0 0.0053 1.71 −12.6+0.1

−0.1 0.8+0.3
−0.3 -14.9 0.55 gw ism

J1600−3053 52.3 0.0036 0.95 −13.5+0.2
−0.6 1.6+1.5

−0.7 -15.0 0.39 gw ism?
J1614−2230 34.5 0.0032 0.96 −14.9+1.0

−0.8 4.7+1.6
−2.0 -15.0 0.44 gw gw

J1643−1224 62.4 0.0046 1.85 −12.3+0.1
−0.1 0.9+0.4

−0.4 -14.8 0.66 gw ism
J1705−1903 57.5 0.0025 2.15 −12.6+0.1

−0.1 0.5+0.4
−0.3 -14.5 1.28 rsn ism

J1713+0747 16.0 0.0046 0.85 −14.1+0.1
−0.1 2.6+0.5

−0.4 -15.2 0.28 gw gw
J1738+0333 33.8 0.0059 2.41 −14.6+0.8

−0.6 5.2+1.3
−1.8 -14.8 0.73 gw gw?

J1744−1134 3.1 0.0041 0.89 −14.1+0.4
−0.6 3.6+1.4

−1.2 -15.1 0.33 gw gw
J1745+1017 24.0 0.0027 0.27 −11.9+0.1

−0.1 2.4+0.6
−0.5 -15.5 0.13 gw ?

J1747−4036 152.9 0.0016 1.31 −12.6+0.1
−0.2 2.4+1.0

−0.7 -14.6 1.03 rsn ism
J1802−2124 149.6 0.0126 7.26 −12.2+0.2

−0.2 1.8+0.7
−0.6 -14.5 1.33 rsn ism

J1853+1303 30.6 0.0041 0.87 −13.5+0.2
−0.4 2.3+1.1

−0.7 -15.1 0.32 gw gw?
J1903+0327 297.5 0.0022 1.88 −12.2+0.1

−0.1 1.5+0.4
−0.4 -14.5 1.24 rsn ism

J1909−3744 10.4 0.0029 1.40 −14.5+0.3
−0.4 4.1+1.0

−0.9 -14.8 0.70 gw gw
J1918−0642 26.6 0.0076 2.57 −13.8+0.4

−0.7 2.7+1.5
−1.0 -14.8 0.63 gw ism?

J1946+3417 110.2 0.0032 0.32 −12.5+0.1
−0.1 1.4+0.5

−0.4 -15.5 0.13 gw ism
J2145−0750 9.0 0.0161 2.98 −12.9+0.1

−0.1 0.6+0.5
−0.4 -15.0 0.41 gw ism

J2234+0611 10.8 0.0036 1.20 −13.9+0.5
−0.9 3.2+2.7

−1.9 -14.9 0.50 gw gw?

aFrom G. Agazie et al. (2023c).
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Part V. Timing equations and mitigations

17. PROFILE MODELING SUMMARY AND ARRIVAL TIME MODELS

We assert the point of view that optimal estimation of achromatic ToAs (i.e. after mitigation of chromatic effects)

should be done at each individual epoch through profile modeling with contemporaneous scattering estimation rather

than analyzing chromatic ToAs in long, multiepoch time series to remove offsets peculiar to any given epoch. This

echoes the conclusion in F. Iraci et al. (2024) that an “epoch-wise”’ approach yields greater accuracy for removing DM

variations than methods that utilize piecewise linear fitting, the DMX method, (e.g. NANOGrav Collaboration et al.

2015; B. J. Shapiro-Albert et al. 2021)), or Gaussian process (GP) modeling (e.g. R. van Haasteren & M. Vallisneri

2014)43. Moreover, our statement applies to all chromatic terms that vary with epoch44, which require more intricate

fitting of ToAs than usage of only a ν−2 dispersion term, as is well known (J. M. Cordes et al. 1990; R. Ramachandran

et al. 2006; J. M. Cordes & R. M. Shannon 2010; J. M. Cordes et al. 2016; M. T. Lam et al. 2018a; D. Kaur et al.

2022; J. Singha et al. 2024; J. Y. Donner et al. 2019; M. T. Lam et al. 2020). Inclusion of non-dispersive chromatic

terms has been explored with GP noise modeling (e.g. EPTA Collaboration et al. 2023; B. Larsen et al. 2024), but

with scattering expressed in timing equations with explicit ν−4 frequency scalings. We have shown that timing delays

differ from scattering times and that delays originate from multiple processes that are epoch dependent with differing

frequency dependences. This leads to mismatch between templates and profiles and resulting ToA errors. Moreover,

these errors generally do not scale as ν−4.

The recourse, at the very least, is to weight contemporaneous measurements more strongly than those from adjacent

epochs. This might entail a more sophisticated GP modeling approach. For example, GP modeling of profiles rather

than of individual terms in measured ToAs could better account for slowly varying chromatic effects. However, it

would not capture the more rapidly varying effects (e.g. finite scintle effect, refraction).

Solely using single-epoch data for achromatic ToA estimation is therefore the optimal approach. This is much more

feasible now that wideband (3:1 or larger) receivers are available to provide simultaneous frequency coverage and

more sensitive telescopes are available. Previously, DM estimation required separate dual or multiple band observa-

tions spread over multiple days or longer, necessitating multiepoch fitting. With determinations from single-epoch

measurements, the quality of the results will be less dependent on the cadence of timing observations.

Myriad effects contribute to arrival times, many of which are distractions from the goals of some applications but are

nonetheless diagnostic of instrumental parameters important for establishing the veracity of an analysis and may be

of interest for ancillary astrophysics. This section consolidates the dominant effects into empirical timing model(s)

suitable for quantitative analysis, taking into account that ToA estimates are methodology dependent. Addressing

biases requires consideration of how the effects of interstellar plasma processes are intertwined with the chromaticity

of emitted pulse shapes. A detailed analysis in Appendix F is summarized here.

17.1. Profile modeling

Profiles are formed by synchronously averaging M ≫ 1 single pulses (equivalent to an integration time M × P , where

P = pulse period) in a bandwidth B at center frequency ν and epoch t. In the following, M and B are implicit and we

ignore any distortions from instrumentation (including polarization miscalibration) and RFI. These distortions are of

course unavoidable in actual measurements and could dominate if astrophysical delays are mitigated to a large degree.

Define Ui as the intrinsic average profile (i.e. upon emission) that is scattered by the PBF p to produce Us = Ui∗p. The

three quantities U, p, and Us are all stochastic. We make use of two kinds of averages: an ensemble average denoted by

43 We note that alternate criteria discussed by F. Iraci et al. (2024) imply that GP modeling and DMX fitting can be superior to epoch-
wise fitting in some cases. However, epoch-wise fitting is more heavily influenced by pulse signal-to-noise ratios so improved telescope
sensitivity can alter this comparison.

44 By and large this implies interstellar refraction, scattering, and dispersion but also applies to any systematic shape changes in emitted
pulse profiles, which in some cases are also chromatic.
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angular brackets ⟨· · · ⟩ and an average over epochs ⟨· · · ⟩t indicated with a subscript t. We assume ergodicity so that

in the limit t→ ∞ the epoch average converges to the ensemble average.

The intrinsic and scattered profiles and scattering function are written in terms of their ensemble averages and devia-

tions,

Ui = ⟨Ui⟩ + δUi, Us = ⟨Us⟩ + δUs, and p = ⟨p⟩ + δp. (17.1)

The scattered profile is then

⟨Us⟩= ⟨Ui⟩ ∗ ⟨p⟩ (17.2)

δUs = δUi ∗ ⟨p⟩ + ⟨Ui⟩ ∗ δp+ δUi ∗ δp. (17.3)

With complete generality, all terms in these expressions are functions of t, ν, and t but the mean intrinsic pulse shape

⟨Ui⟩ is now assumed to be epoch independent (with exceptions, as previously mentioned). The deviation δUs includes

intrinsic pulse jitter in δUi and fast and slow variations of the PBF in δp, all of which are epoch dependent and

chromatic.

The measured profile in Stokes I is

I(t, ν, t) = A(ν, t) × Us(t− t0(ν, t), ν, t) +N(t, ν, t). (17.4)

The pulse amplitude A(ν, t) includes scintillation modulations (DISS and RISS) of the emitted flux density that are

epoch dependent and chromatic. DISS modulations are attenuated by bandwidth and temporal averaging for high-DM

pulsars or low-frequency observations. Modulations can be large for low-DM pulsars at 1 to 2 GHz, thus affecting the

S/N-related ToA error (c.f. Equations 6.3, 6.8, and 6.9).

The arrival time t0(ν, t) includes contributions to the net propagation time from pulsar to observatory but not those

effects that alter the pulse shape. It therefore includes interstellar dispersion and its temporal variability along with

single-path refraction but it excludes shape-changing effects from multipath propagation. As such, this ToA term is

intended to correspond to propagation from a specific location in a pulsar’s magnetosphere that corotates with the

neutron star. The additive noise term N(t, ν, t) is from radiometer noise, which is uncorrelated between different ν

and t.

Without any shape changes (δUs = 0), the pulse model in Eq. 17.4 would strictly satisfy the conditions for matched

filtering (§6) and the only ToA error would be from additive noise, N(t, ν, t). That shape changes do occur imples

that ToA errors will always be larger than those predicted for matched filtering.

17.2. Template modeling

Errors in ToAs depend on the methodology for implementing template matching and in particular the choice of

template. A matched filter by definition maximizes the S/N of the filter output. However, even if a template nearly

yields the maximum theoretical S/N, it does not eliminate ToA bias. The chromaticity and epoch dependence of

measured pulse profiles essentially guarantees that this bias will always be present. Existing practices make use of

different kinds of templates in the matched filtering process described in §6.

Briefly, several alternatives have been employed, as summarized in Table 8 and elaborated on here:

Synthetic template model: A template comprising one or more analytic components (e.g. Gaussian functions)

typically does not explicitly include scattering; however, scattering in data used to form synthetic templates may

have affected the fitting of these components, albeit at low levels for low-DM pulsars. It will therefore yield both

systematic and random ToA errors. To match actual profile chromaticity, particularly with multicomponent

profiles, synthetic templates need to include frequency dependent amplitudes, widths, and pulse phases.

Empirical template at each frequency: Multifrequency templates built from measured pulses necessarily

include scattering, albeit from an epoch or range of epochs that differ from those of profile data used to obtain
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Table 8. Templates and timing errors induced by scattering

Template type Intrinsic Pulse Shape PBF Chromatic ToA cause TOA correction

(U) (p)

True (hypothetical) (for center frequency ν and epoch t)

Ui(t, ν, t) p(t, ν, t) None a 0

Ui(t, νref , t) p(t, νref , t) Chromatic Ui tδUs(ν, νref , t)

Empirical (where ⟨· · · ⟩t indicates average over available epochs, t)

1. 2D (U2) ⟨U(t, ν, t)⟩t ⟨p(t, ν, t)⟩t Epoch dependencesb Customized

2. 1D (U1) ⟨U(t, νref , t)⟩t ⟨p(t, νref , t)⟩t Epoch dependences and

(fixed at νref) chromaticity b

Synthetic model Multi-Gaussian: c Exponential: d

Ug(t, ν, t) e−t/τ(ν,t)Θ(t) U, p mismatches tG∗E(ν, t)

Power law: e

PL(t, ν, τ(t),ΘPL) U mismatch tG∗PL(ν, τ̂d(t), δΘ̂PL)

ΘPL = (β, li,θx) Parameter errors

Coherent Estimated Û Estimated p̂ Estimation errors tCS(ν, t̂)

deconvolution

Estimates for scattering times, τ̂d(t)

1. Dynamic spectrum analysis (ACF, secondary spectrum) Estimation error tτ (τ̂d(ν, t|U, p)

2. Cyclic spectrum analysis Estimation error tτ (τ̂d(ν, t|U, p)

aNo ToA offset from template-profile mismatch. ToA errors from white noise effects are implicit.

bEpoch dependence of p due to τ(ν, t) and (rarely) epoch dependence of U . Chromaticity of intrinsic pulse and PBF shapes.

cMulticomponent Gaussian model: Ug(t, ν, t) =
∑

j aj exp
[
−(2

√
ln 2(t− tj(ν, t))/Wj(ν, t))

2
]

dΘ(t) = Heaviside function

eΘPL = parameter vector for power-law PBF that includes θx, a vector of parameters for the spatial distribution of
scattering regions (e.g. thin screen, thick slab, transversely bounded clouds, etc; δΘPL denotes errors in these parameters.

ToAs. This removes intrinsic profile chromaticity (to the extent that it is epoch independent) but will only

partially remove systematic ToA errors from scattering.

Empirical template at a single frequency and epoch (νtemplate and ttemplate): Correction for profile

chromaticity requires a lookup table of timing offsets (‘FD’ parameters). Scattering baked into the template

generally differs from that in the profile even after scaling a representative scattering time to each frequency

(epoch dependence!). Template fitting thus removes some but not all scattering contributions.

Template matching can be applied in two ways: simultaneously over a wide band or on a narrowband, channel-by-

channel basis covering the same total band.
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Two-dimensional empirical template (‘Wideband timing’): The 2D template is a pulse shape averaged over many

epochs for each frequency ν in a multichannel system spanning a total bandwidth B and denoised to minimize ToA

estimation errors. Ignoring the multiplier A in Eq. 17.4, the 2D template,

Û2(t, ν, t) = ⟨I(t, ν, t)⟩t, (17.5)

is the basis for ‘pulse portrait’ fitting pioneered by K. Liu et al. (2014) and T. T. Pennucci et al. (2014, 2016). It is

related to the ensemble average shape as Û2 = ⟨Us⟩ + ⟨δUs⟩t. Averaged over a large number of epochs, the difference

⟨δUs⟩t reduces to a small value that we ignore in the following.

The 2D template can be applied as a cross correlation with 2D profiles to yield DM(t) and a ToA at a specified

reference frequency.

At each frequency ν, the cross correlation of the template and profile, Û2(t, ν, t) ∗ I(t, ν, t) includes two terms. The

leading term is the delayed autocorrelation of ⟨Us⟩, yielding a ToA estimate equal to the true value, t0(ν, t). The

second term is the cross correlation ⟨Us⟩ ∗ δUs, which adds a perturbation ∆tδUs,δp(ν, t) from pulse jitter and PBF

fluctuations, both fast (finite number of scintles) and slow (e.g. refractive modulation of the PBF).

One-dimensional empirical template (‘Narrowband timing’): Alternatively, individual ToAs can be obtained for each

subband frequency ν across the total bandwidth B, which are then fitted to give DM(t) and a ToA at a reference

frequency. A 1D template uses the 2D template at a reference frequency νref ,

Û1(t, νref , t) = ⟨I(t, νref , t)⟩t ≡ Û2(t, νref , t), (17.6)

that is applied to individual profiles at each frequency ν. In this case, the first term of the CCF of Û1 with a profile

adds a bias to the true ToA due to profile chromaticity, ∆tUref ,U (ν). Profile chromaticity manifests as changes of widths

and pulse phases of profile components with frequency. The second term yields a stochastic delay from pulse jitter

and PBF variations like that for the 2D template, ∆tδUs,δp(ν, t), but it will differ quantitatively due to the different

template. The net ToA is written as

t̂(ν, t) = t0(ν, t) + ∆tU1ref ,U (ν) + ∆tδUs,δp(ν, t). (17.7)

The first perturbation, ∆tU1ref ,U (ν), is the systematic error from profile chromaticity (‘profile evolution’). It is ad-

dressed in NANOGrav timing analyses by modeling it as a power series in (ln ν),

∆̂tU1ref ,U1
(ν) =

Nl∑
l=1

∆t
(pe)
l (ln ν)l. (17.8)

The coefficients ∆t
(pe)
l and their optimal number Nl are determined from a fit to profiles over many epochs for each

pulsar. Random errors in the coefficients are small if profiles have large-enough S/N but systematic errors arise if

profiles show secular evolution. Note that the coefficients include contributions from scattering as well as intrinsic

profile chromaticity.

Template modeling: Another common approach models the intrinsic pulse shape ⟨Ui⟩ as a superposition of Gaussian

components,

Um(t, ν, t) =
∑
j

gj(ν, t) exp
[
−(2

√
ln 2(t− tj(ν, t))/Wj(ν, t))

2
]
, (17.9)

with individual amplitudes gj , locations tj and widths Wj (FWHM). Generally, all three quantities vary with frequency

and also, in principle, with epoch. However, pulsars providing the best timing results evidently have very little intrinsic

variability with epoch. The Crab pulsar is a counterexample: its spindown time ∼ 103 yr is short enough that secular

changes in pulse shape have been discerned since its discovery more than half a century ago (A. Lyne et al. 2013).

Another is the MSP J1713+0747 that shows changes in profile in the form of episodic events.
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17.3. PBF models

A model for the pulse broadening function pm enters into ToA estimation either directly through inclusion in template

modeling as in Eq. 17.9 or indirectly with empirical templates. For any model, the 1/e time τ is strongly frequency

dependent and also epoch dependent from refraction (and possibly other causes).

Exponential PBF: A common choice is the single-parameter exponential form, pE(t, τ) = τ−1 exp(−t/τ)Θ(t) (Θ =

Heaviside function) described earlier (§ 11.1). The exponential PBF is almost always a poor choice because it can

apply only under special conditions that are not applicable to precision timing of low-DM MSPs. First, it requires

a thin screen scattering geometry but more importantly it applies to either a monoscale medium or one with a large

inner scale, li, compared to the diffraction scale, ld (e.g. H. C. Lambert & B. J. Rickett 2000). Such a medium is

inconsistent with observations of low-DM pulsars. Nonetheless it has seen extensive, but problematic, use in pulse

modeling.

Power-law PBFs: A better choice is pPL, a ‘power-law’ PBF from a medium with a power-law electron density

spectrum, such as the Kolmogorov spectrum with a small inner scale (§ 11.2). The parameters of PL models are the

1/e scattering time τ and ΘPL = (β, li,Θx), where β is the spectral index of the density spectrum, li is the inner scale,

and Θx is a vector of parameters for the spatial distribution of scattering regions along and transverse to the LoS.

Consequences of mismatched profile elements: A template model inevitably differs from a measured profile shape due

to mismatches between the modeled and actual intrinsic shapes or PBF shapes. Template fitting accordingly yields

systematic ToA errors that accompany random errors.

As with empirical templates, we express the model intrinsic profile and model PBF in terms of their average forms or

shapes and departures from them,

Um = ⟨Ui⟩ + (Um − ⟨Ui⟩) ≡ ⟨Ui⟩ + δUm (17.10)

pm = ⟨p⟩ + (pm − ⟨p⟩) ≡ ⟨p⟩ + δpm. (17.11)

Together these give a model scattered profile,

Ums =Um ∗ pm = ⟨Us⟩ + δUms, (17.12)

that deviates from the actual scattered pulse ⟨Us⟩ by

δUms = δUm ∗ ⟨p⟩ + ⟨Ui⟩ ∗ δpm + δUm ∗ δpm. (17.13)

17.4. Arrival time equations

There is no unique choice of equation for modeling long sequences of multiepoch ToAs. The adequacy of a ToA
expression is illustrated by considering a sequence of models ranging from simplistic to comprehensive.

17.4.1. No ISM terms

First, suppose ISM effects are completely absent but pulse profiles are chromatic and epoch independent. This is

hypothetical in the radio context but would apply to very high frequency (≫ 10 GHz) measurements, including non-

radio observations from the millimeter band to gamma-rays. Though propagation effects are largely achromatic in

these bands45 emitted pulses are frequency or energy dependent, typically.

The ToA model is written compactly (with the center frequency ν and epoch t implicit) as,

t̂ν = t∞ + tmismatch + ∆tS/N + ∆tJ, (17.14)

where t∞ is the target ToA that would include all achromatic effects related to the spin and orbit of the neutron

star combined with astrometric terms and gravitational wave perturbations46. The tmismatch term is nonzero if a

45 Note however that scattering off interstellar grains can induce multipath propagation even in X-rays (e.g. C. W. Mauche & P. Gorenstein
1986).
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reference-frequency template is applied to profiles at all frequencies (or energies in the high-energy context). Errors

from radiometer noise and pulse jitter have temporal white-noise statistics. We keep them separate here because

they differ statistically across frequency, as discussed previously. If epoch independent, tmismatch is determinable

from measurements built up over many epochs on each pulsar. This is the basis for the FD (‘frequency dependent’)

parameters used in NANOGrav’s chromatic mismatch model,

t̂mismatch(ν) =

n∑
k=1

ck(ln ν)k, (17.15)

where the number of terms and coefficients ck are determined on a pulsar-by-pulsar basis. This appears adequate for

many pulsar timing applications (T. Dolch et al. 2014; NANOGrav Collaboration et al. 2015; W. W. Zhu et al. 2015).

Figure 68 shows chromatic template profiles, difference profiles, and timing offsets across ∼ 1 to 2 GHz. These are

based on the 2D profile modeling by T. T. Pennucci (2019). Though the profiles differ very little by eye, ToA differences

of a sizable fraction of a microsecond occur for MSP J1713+0747 though they are only ∼ 10 ns for J1909-3744 owing

to its narrow pulse. The offset curve for J1713+0747 is consistent with that based on measured profiles shown by T.

Dolch et al. (2014, Figure 4).
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Figure 68. Timing offsets caused by profile chromaticity for two MSPs. Top panels: profiles at band edges and a full-band
average profile. Middle panels: profile differences from the band average. Bottom panels: relative timing offset by using the band
average as a template and removing a fit for a ν−2 DM term. Profiles are generated using the interpolation method developed by
T. T. Pennucci (2019) as applied in the 15-yr NANOGrav data set (https://zenodo.org/records/16051178) and using software
obtained at https://github.com/pennucci/PulsePortraiture and implemented by M. Lam (private communication).

The shape of tmismatch vs. ν is methodology dependent, contingent on the template used to determine ToAs. As such

it generally crosses zero with an arbitrary zero point. This implies that a power-law model such as tmismatch(ν) ∝
ν−Xmismatch cannot account for this term. On the other hand, the chromatic mismatch model (Eq. 17.15) can handle

zero crossings of tmismatch.

Similarly the two dimensional template method for ToA estimation over wide frequency bands (T. T. Pennucci et al.

2014) also accounts for profile chromaticity. With strict epoch independence, the tmismatch term can be removed

to essentially arbitrary precision under the conditions outlined here. Unfortunately, in the radio band chromatic

ISM effects (and RFI) obviate this possibility because they require attention to epoch dependent scattering and the

chromaticity of PBF shapes for power-law media.

46 We associate t∞ with the rotational phase of a fiducial point on the neutron star’s surface or, equivalently, the average location in the
magnetosphere for emission at a particular frequency, which is achromatic and epoch independent (at least over time spans much less
than the spindown time). Differential emission times vs. frequency in the pulsar’s magnetosphere (c.f. Fig. 10) are then included in the
chromaticity of the pulse profile.

https://zenodo.org/records/16051178
https://github.com/pennucci/PulsePortraiture
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17.4.2. Inclusion of an epoch independent dispersion term

Inclusion of a dispersion term with DM that varies with epoch but is achromatic (no scattering) yields the next simplest

case,

t̂ν = t∞ +
KDMDM(t)

ν2
+ tmismatch + ∆tS/N + ∆tJ, (17.16)

In principle, multifrequency observations and prior determination of tmismatch can remove the DM term to a precision

limited only by the white noise terms. If applied to radio pulsars, this model would lead to chromatic leakage into

estimates of t∞ caused by scattering, which causes DM to be chromatic.

17.4.3. Full expression for ToAs at the SSBC

Motions of the pulsar, ISM, and observer introduce epoch dependence in all propagation effects, including refraction

and multipath propagation from scattering that also require differing chromatic terms in the timing equation. Pulse

distortion from the convolution with the PBF induces short term and long term timing offsets. Refraction, which

varies on day to several month time scales, causes image wander and distortion of the PBF (§ 11.3).

We account for the epoch and frequency dependent DM term DM(ν, t) by expanding DM(ν, t) = ⟨DM(ν, t)⟩B +

δDM(ν, t) as an average over the receiver bandwidth and a fluctuating part. Translation of ToAs to the SSBC requires

clock corrections and accounting for Doppler shifts and astrometric errors. Details of these and other corrections are

well discussed in (e.g.) I. H. Stairs (2003), G. B. Hobbs et al. (2006), and S. Taylor (2021). Here we include an additional

error term in the translation to the barycenter related to the Römer term for the difference in propagation times to

a terrestrial observatory and to the SSBC; it is nominally achromatic, involving the geometric path length difference

with parallax and proper motion of the pulsar included. Inclusion of the refraction (AOA) term ∆tAOA,SSBC(t, ν)

renders the Römer term chromatic (R. S. Foster & J. M. Cordes 1990) in expressions for the arrival time and radio

frequencies referenced to the SSBC47,

t̂ν = t∞ + tmismatch(ν, νref) +
KDM⟨DM(ν, t)⟩B

ν2

+ ∆tS/N + ∆tJ + ∆t
(all)
δp

+ ∆t
(all)
δp +

KDMδDM(ν, t)

ν2
+ ∆tAOA,SSBC(t, ν). (17.17)

The terms are ordered so that the first line of Eq. 17.17 includes the usual target of interest, the achromatic t∞ term,

the epoch-independent mismatch term from chromatic pulse shapes, and the DM term with an achromatic DM at

epoch t. The second line includes the well-recognized white-noise terms from the finite S/N, jitter, and DISS/FSE

that change rapidly (i.e. statistically independent between non-overlapping data sets), while the third line includes

three ToA offsets that vary slowly from changes in PBF shape, the chromatic DM term, and the AOA/SSBC term.

The physical origin of the terms and their fluctuation properties with respect to epoch t and fluctuation frequency f

are summarized in more detail:

1. t∞ includes all achromatic contributions from a deterministic spin model, including spin noise, emission location

and direction, and orbital terms (all added to the mean propagation time related to the secularly changing pulsar

distance,) and GW perturbations. Spin noise and GW perturbations have red, power-law like spectra and any

continuouse-wave GW signals add spectral lines.

2. tmismatch(ν, νref) is the timing offset due to profile changes with frequency when the template at νref is used for

template fitting at other frequencies. It is defined to be epoch independent; pulsars that show epoch dependent

47 Both the solar wind and the ISM contribute to refraction but our focus is on the interstellar contribution. Unless the impact parameter
of a line of sight to the Sun ≪ 1 au, refraction in the solar wind is more than an order of magnitude smaller than from the ISM.
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profiles do so on a variety of time scales; those with discontinuous ‘mode’ changes would show f−4 spectra while

variations like that of J1713+0747 would have amorphous spectra (note however that this kind of profile change

would be mitigated through modeling in the time domain, not the spectral domain).

3. KDMν
−2DM(t, ν)B is the dispersion term associated with the average DM across the bandwidth B for center

frequency ν and scales strictly as ν−2. Its variations with epoch conform to a power law spectrum determined

by the wavenumber spectrum of the electron density with enhancements by discrete interstellar structures.

Additional contributions from the solar wind and Earth’s ionosphere are typically much smaller but are variable

over a wide range of time scales.

4. ∆tS/N +∆tJ +∆t
(all)
δp from radiometer noise, pulse jitter, and the DISS/FSE effect have different radio frequency

dependences but combine as white temporal noise for ToAs obtained from data that do not overlap in epoch

or, for ∆t
(all)
δp , epochs separated by more than a DISS time scale (minutes to hours). Across frequency, ∆tS/N is

uncorrelated between frequency channels (subbands) while ∆tJ is highly correlated over (at least) an octave in

frequency. The ∆t
(all)
δp term is intermediate with a correlation bandwidth ∆νd much smaller than an octave but

often spanning multiple frequency channels.

5. ∆t
(all)
δp (t, ν) is the timing offset from long term temporal changes in PBF shape; it has a flat spectrum that rolls

off at approximately the inverse of the RISS time scale, f ∼ ∆t−1
RISS.

6. KDMδDM(ν, t)/ν2 is the chromatic error from the scattering-induced frequency dependence of DM. It also has

a flat spectrum that rolls off at f ∼ ∆t−1
RISS (J. M. Cordes et al. (2016, Figure 5) and § 12.2).

7. ∆tAOA,SSBC(t, ν) from the barycentric translation of ToAs caused by interstellar refraction that varies both

stochastically and cyclically with a yearly period. The spectrum is a shallow power law with rolloff at f ∼ ∆t−1
RISS

shifted to a centroid of 1 cy yr−1.

18. ToA ERROR CORRECTIONS

Raw arrival times from template fitting include all delays and pulse distortions imposed at the pulsar and during

propagation (and instrumental effects peculiar to each observing system.).

Any departure of a measured pulse profile’s shape from that of the template yields an arrival time offset. Shape

differences can be imposed by propagation, instrumentation, or RFI. They also occur statistically from the finite

number of pulses used to form a profile. Systematic changes in shape occur as ‘mode changes’ (predominantly in

CPs) where single pulses are drawn from two or more pulse populations whose averages converge to different template

shapes.

18.1. Mitigation of intrinsic (emitted) pulse shape variations (jitter etc.)

Correlations between profile shape and timing offset can be exploited as the basis for ToA error correction. These

methods have been explored using a variety of techniques, including principal component analysis (PCA).

Suppose a pulse shape parameter Sp is determined for a sequence of average profiles, each comprising the sum of N

pulses. Profiles differ for the reasons cited above (along with additive noise) and the shape parameter could be as

simple as the amplitude ratio of two components or it could be the projection of a profile onto one or more of the basis

functions from PCA. Departures δS = Sp − ⟨Sp⟩ from the shape parameter ⟨Sp⟩ of the template may correlate with

corresponding timing offsets δt = tp−⟨tp⟩. A linear ToA corrector that minimizes the mean-square difference between

the corrected ToA tc and the true ToA is

tc = t+ (σtp/σSp
)ρS,tδS, (18.1)

where ρS,t is the correlation coefficient , t is the nominal ToA and the correction involves the RMS values of tp and

Sp. The efficacy of the error correction, as measured by the RMS corrected ToA, σtc = σtp(1−ρ2S,t)1/2 requires a large
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correlation coefficient to make significant improvements. To reduce the RMS error by 50% requires |ρS,t| =
√

3/2 ≃
0.87.

The earliest attempt of this type of ToA correction was by G. S. Downs & J. Krause-Polstorff (1986, Appendix) in

their analysis of timing variations based on a profile shape analysis method (JMC, unpublished notes, 1981). Trying

several types of shape parameters, they found no significant correlation for the Vela pulsar and only ∼ 30% correlation

for two pulsars (B1818−04 and B1911−04) out of the other 21 pulsars in the JPL timing program (G. S. Downs &

P. E. Reichley 1983). A retrospective analysis (JMC, unpublished, 2014) implies that the lack of correlation for the

JPL sample is due to the absence of dedispersion of the S-band data48. As shown in § 12.5.1, interstellar scintillation

causes the effective center frequency to vary on a diffractive scintillation time scale, producing timing variations (c.f.

Eq. 12.34). For the bright Vela pulsar, this effect dominates the jitter error, which in turn is larger than the radiometer

noise contribution. In this situation, no correlation is expected, because changes in effective center frequency do not

modify the pulse shape.

Usage of PCA for pulse shape and related studies was done by M. M. Blaskiewicz (1991), P. B. Demorest (2007),

and S. Os lowski et al. (2011). Correction of ToAs from the very bright MSP J0437−4715 using PCA yielded a 20%

reduction in ToA error (S. Os lowski et al. 2011). Recent work further developed PCA-based tools for characterizing

pulse shape variations of simulated data and pulses from the Vela pulsar (R. J. Jennings et al. 2024a) and transitory

shape variations from the MSP J1713+0747 (R. J. Jennings et al. 2024b). Application to ToA correction to the Vela

pulsar yielded a 30% reduction in ToA error (R. J. Jennings 2021).

Simulations of average profiles indicate that intrinsic phase jitter for pulsars with single-component profiles yields

negligible correlation between pulse shapes and arrival times. However, there are significant correlations (and thus

ToA improvements) for multicomponent profiles with strong amplitude variability of individual pulses with some

degree of overlap in pulse phase (R. J. Jennings 2021). More dramatic changes from shape shifter pulsars, like those

that display profile ‘mode changes’ (mostly seen in canonical pulsars) produce large correlations and thus significant

corrections to ToAs(e.g. R. S. Nathan et al. 2023).

18.2. Removing DM variations

While DM delays dominate all other chromatic perturbations, completely removing them is confounded by refraction,

scattering, and intrinsic pulse profile chromaticity. In §17 we briefly summarized two main approaches, one that

operates on single-epoch pulse profiles and ToAs and an alternative that separates chromatic terms in long sequences

of many-epoch ToAs (e.g. using DMX and Gaussian process models). Comparisons of methods have been presented by

F. Iraci et al. (2024) and other authors previously cited. Contributions to DM from the solar wind (SW) are absorbed

in DM estimates so, to within the precision of those estimates, no special modeling of the SW is required. However,

close approaches of lines of sight to the Sun yield rapidly changing DM(t) that requires special attention, including

the possibility of excision of those epochs from timing analyses.

In the following we first consider pulsar-frequency combinations where scattering can be ignored even if ≪ 100 ns

precision timing is striven for. Then we consider alternative approaches for making single-epoch corrections for

dispersion and scattering.

18.3. Conditions where ToA scattering bias is negligible

To motivate the selection of pulsars based on allowable tolerance levels for scattering, we use a simplified ToA expres-

sion, tν = t∞ + ν−2KDMDM + ϵν , where the ToA at frequency ν is the sum of the true ToA t∞, a dispersion term,

and an error term ϵν . Though timing measurements are now made with broadband receivers, the essential issues are

illustrated using ToAs at two frequencies νl < νh with ratio R = νh/νl > 1. These are used to estimate and remove

48 The JPL program used a narrow bandwidth at S-band that yielded small dispersion smearing of pulses, so no dedispersion was deemed
necessary.
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the DM term, yielding an error for t∞,

δt̂∞ = t∞ − t̂∞ =
ϵνl −R2ϵνh
R2 − 1

= ϵνh × (RXϵ −R2)

R2 − 1
, (18.2)

The high frequency error is enhanced by the R2 factor but if ToA errors scale as ϵν ∝ ν−Xϵ with Xϵ > 2, the low

frequency error dominates the net error, as in the second equality. We showed earlier that the chromatic error is

generally smaller than the scattering time and the scaling index Xϵ is itself chromatic and satisfies Xϵ ≲ Xτ where

Xτ = 22/5 for the Kolmogorov inertial subrange. It is therefore conservative to require the scattering time τνl to be

less than some specified amount. Assuming Xϵ > 2 for ToA errors, Eq. 18.2 implies that the lowest frequency used

by a PTA is the primary determinant of the DM-corrected ToA. Scattering delays can be ignored if they are below a

chosen maximum and we invert the empirical expression for scattering times in Eq. 10.16 to derive the corresponding

maximum DM.

No correction is needed if τ(ν) < τmax for a fixed value of τmax
49. For τmax = 10 ns this yields a constraint on

frequency,

ν ≥ (τ1/τmax)1/Xτ ≃ 2.8 GHz × [(10 ns/τmax)τ1]5/22. (18.3)

1

10

100

103

DM
(p

cc
m

3 )

LFarrays
LWA, MWA, LOFAR

SKA low

CHIME

DSA 2000

SKA mid
+ ngVLA

Maximum DM curves
for < (DM)

(DM)
100 s
10 s
1 s
100 ns
10 ns

0.1 1 10
Frequency (GHz)

10 3

1
103

106

S(
)

(m
Jy

)

MSPs 1 10 100
Counts

MSPs
CPs

Figure 69. Scattering times vs. DM and radio frequency along with flux density spectra for MSPs and DM number counts
for MSPs and CPs. Frequency bands of particular telescopes are indicated. Largest frame: lines of constant τ vs DM and
frequency. Bottom frame: flux density vs. frequency for MSPs that have catalogued flux densities at 0.4 and 1.4 GHz (R. N.
Manchester et al. 2005). Extrapolations to ≲ 0.1 GHz are uncertain given that some pulsars show turnovers in their spectra.
Right panel: DM histograms for MSPs and CPs in the Milky Way disk; globular cluster pulsars are excluded.

Figure 69 shows lines of constant τ as a function of DM and frequency for scattering times from 10 ns to 100µs along

with frequency ranges for several low-frequency arrays and CHIME along with bands covered by forthcoming arrays

(DSA-2000, SKA-mid, and the ngVLA). Current PTA programs by worldwide collaborations (NANOGrav, EPTA,

49 An alternative is to require that only one scintle fills the bandwidth B, equivalent to having no frequency-dependent scintillation
modulation, but since bandwidths differ between receivers, we prefer a constant maximum value.
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PPTA, CPTA, and InPTA) use a large number of telescopes approximately coincident with the band indicated for

DSA-2000.

For a telescope covering a specific frequency range, like those indicated in the figure, the lowest frequency determines

whether the timing analysis can avoid mitigation of scattering. For example, pulsars with DM ≲ 4 pc cm−3 satisfy the

condition τ(DM, ν) ≤ 100 ns for the CHIME frequency band (0.4 to 0.8 GHz), DM ≲ 20 pc cm−3 for the 0.7 to 2 GHz

band for DSA-2000, and DM ≲ 75 pc cm−3 for timing programs with 2 GHz as the lowest frequency. Low-frequency

arrays will require scattering mitigation to achieve 100 ns precision. Conducting observations at high frequencies is

limited by the generally steep decline in flux densities, as shown in the bottom panel of Figure 69. Given the typically

steep spectra of radio pulsars, observations from ∼ 1 to 2 GHz generally offer a good compromise between minimizing

interstellar delays and maximizing signal-to-noise ratios. Magnetars have flat radio spectra, allowing observations at

much higher frequencies where scattering is minimal, but even at low frequencies, interstellar scattering delays are

completely dominated by intrinsic spin noise in those objects.

While restricting PTA programs to low-DM pulsars is one strategy, the DM histograms in the right-hand panel of

Figure 69 show that scattering mitigation for MSPs with DM > 20 pc cm−3 could increase the sensitivity to GWs,

perhaps significantly, by virtue of the sheer increase in pulsar numbers.

Timing programs with other goals, such as orbit monitoring of relativistic double neutron star binaries, need not have

such demanding requirements on scattering times because other factors can determine the achievable precision in those

cases, such as the longer periods with their correspondingly wider pulses and their larger attendant pulse jitter.

18.4. Mitigation of rapid PBF variations related to scintillation fluctuations

ToA errors from scattering include rapid variations from the finite scintle effect (FSE, § 12.5.2) combined with an epoch-

dependent bias related to the scattering time τ . We consider the FSE here and ToA bias in the next sections. The

FSE error is a zero mean error resulting from the variable number of scintles contributing to a TOA or, equivalently,

from the stochasticity of the intensity PBF.

Figure 70 shows simulated ToA variations and scintillation bandwidth estimates for 1000 realizations of a PBF for a

thick medium (the results do not depend strongly on the type of medium). The left panels show δToA plotted against

the 1/e scattering time estimated directly from PBF realizations and plotted against the scintillation bandwidth

estimated from ACFs of the scintillation spectrum. The right hand panel shows a scatter plot of δToA and ∆νd along

with a regression line. The ToA and ∆νd are typically (in these simulations) anticorrelated at rδt,∆νd = −39 to −25%.

Anticorrelation of δToA with ∆νd implies a positive correlation with the scattering time, rδt,τ = −rδt,∆νd . This

correlation allows correction of the TOAs using an expression analogous to Eq. 18.1 tc = t− rδt,τ (σToA/στ )(τ − ⟨τ⟩),
yielding a reduction in ToA error by a factor Rc = (1 − r2δt,τ )1/2. For rδt,τ ≃ 0.35, the reduction factor is Rc ≃ 0.94,

i.e. only a 6% reduction.

18.5. Mitigation of slow epoch-to-epoch scattering time (τ) variations

To tackle the epoch-dependent variability of scattering, mitigation of scattering for timing purposes is best done

using at-least contemporaneous and preferably simultaneous data for both scattering and timing determinations.

The alternative use of scattering/scintillation data from separated epochs can only partially mitigate scattering at a

particular epoch. We focus here on the simultaneous case.

Use cases for scattering mitigation divide into two categories defined by the degree of scattering:

1. Incoherent deconvolution of scattering: This applies to strongly scattered pulsars with unresolvable scintillation

structure. Distant pulsars observed at low frequencies will manifest scattering solely as pulse broadening because

the scintillation bandwidth ∆νd is too small to resolve due to a combination of FT resolution limits and low

S/N.
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Figure 70. Simulations for a thick medium with a square-law structure function (1000 realizations). Top left: δToA vs 1/e
scattering time estimated directly from the noisy PBF. Bottom right: δToA vs. scintillation bandwidth estimated from an ACF
analysis of the scintillation spectrum H(ν). Right: δToA vs. scintillation bandwidth estimated from the ACF of H(ν) along
with regression line. The variations of ToA and ∆νd between realizations are anticorrelated at −29% for simulation results
shown.

A notable use case for incoherent deconvolution is its application to any special pulsar of interest at a large

distance in the Galactic plane owing to its rarity. Large scattering times ≳ 1 ms, for example, would correspond

to scintles with widths ∆νd ≲ 160 Hz and rapid DISS time scales too small to be isolated in most data sets. This

implies contributions to pulse broadening in a typical data set from a large number of scintles (c.f. Eq. 12.33)

and an uncorrectable ToA error from the finite scintle effect (§ 12.5.2). However, the much larger systematic ToA

offset can be mitigated through deconvolution.

Arrival times can be a byproduct of deconvolution of an intensity PBF or pulse-shape modeling, with accuracy

dependent on the fidelity of the modeled to actual shapes of the intrinsic pulse and PBF.

Incoherent deconvolution of an intensity pulse broadening function from measured pulse shapes would be followed

by template fitting at each frequency to obtain ToAs; these would be fitted for DM and dispersion delays then

removed, as usual.

Alternatively, the measured pulse can be forward modeled by convolving a model intrinsic pulse shape with

candidate PBFs to identify the best PBF (e.g. N. D. R. Bhat et al. 2003; A. Geiger et al. 2025). As discussed

previously, a mis-modeled intrinsic shape will introduce biased values for the scattering time and ToA as will a

mis-matched PBF. This procedure can be repeated for all frequency channels and then a DM-corrected ToA can

be estimated.

The general flow of these methods is

profile I(ϕ, ν; t)
+ −→ model pulse and ToA t̂ν

PBF p(t, ν; t)
(18.4)

2. Coherent deconvolution of scattering and high-resolution spectroscopy:. Pulsars with resolvable scintillation struc-

ture allow alternative procedures. MSPs observed in current PTAs and other low-DM pulsars fall into this

category. Timing error corrections can be based on detailed analysis of scintillation structure using several

approaches, including phase-resolved spectroscopy (PRS) and cyclic spectroscopy (CS).

To correct biased arrival times, first estimate the pulse broadening time τ or the DISS bandwidth ∆νd = C1/2πτ

and then use the known pulse template to determine the ToA offset caused by τ . Recall that the ToA offset

is generally not a simple function of τ (c.f. § 12.6.2). Calculate biased multifrequency arrival times using

a fixed template followed by fitting and removal of multiple chromatic terms from the ToAs, one of which is
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for scattering, which is epoch dependent, and another for intrinsic profile chromaticity, which is largely epoch

independent50.

The flow of this method involves two parallel steps

(a) ToAs at frequency ν are obtained through template fitting of a profile at frequency ν and epoch t:

profile I(ϕ, ν, t) −→ template fit −→ t̂ν . (18.5)

(b) In parallel, the dynamic spectrum (DS) is produced by phase resolved spectroscopy (PRS) or by cyclic spec-

troscopy (CS) and an estimate for the ToA correction ∆t
(c)
ν (τ̂d) is derived from the scintillation bandwidth

∆̂νd,

PRS or CS −→ dynamic spectrum (DS) I(ν, t, t) −→ ∆̂νd −→ τ̂d −→ δt̂ν(τ̂d). (18.6)

For high signal to noise cases, coherent deconvolution is a possibility. It makes use of the phase information in

the CS to obtain the field PBF h̃ and the intrinsic pulse shape. This effectively deconvolves the field PBF from

the measured voltage signal:

CS −→ unscattered pulse shape and PBF −→ corrected ToA. (18.7)

18.5.1. Intensity (incoherent) deconvolution of pulse broadening

Inversion of scattering through deconvolution with noisy data is almost always problematic. With high enough S/N,

an intensity PBF, if known, can be deconvolved from profiles. Two methods for doing so make use of Fourier transform

division or application of the CLEAN algorithm. The first is based on the convolution theorem applied to the measured

profile and an assumed PBF shape. With no additive noise, the FT of the intrinsic shape is simply the ratio of FTs,

Ũ(ν) ∝ Ĩ(ν)/p̃(ν) (A. D. Kuz’min & V. A. Izvekova 1993). However, additive noise makes this approach essentially

infeasible because noise causes large excursions of the ratio.

The CLEAN algorithm, developed for deconvolution of the point spread function (PSF) from radio images obtained

with aperture synthesis, has been used for a broader range of applications than interferometic imaging. It operates

by iteratively subtracting a scaled and angle-shifted PSF from an image. For pulse profiles, an assumed PBF plays

the role of the PSF and the pulse profile for the image. Without a priori knowledge of the PBF shape, iteration over

a bank of PBF shapes can be applied to both identify the best PBF and determine the accompanying intrinsic pulse

shape (N. D. R. Bhat et al. 2003, 2004; J. Tsai et al. 2017; O. Young & M. T. Lam 2024). A boundary condition

that aids identification of the optimal PBF is that the resulting intrinsic intensity profile must be non-negative51.

Application to heavily scattered pulsars (N. D. R. Bhat et al. 2004) shows that some LoS favor a thin screen PBF

having a rapid rise time while others favor a thick medium with a slower rise.

Intensity deconvolution has the advantage that it can be applied to pulse profiles with long integration times ≫ ∆tISS
and potentially high signal-to-noise ratios. However, to be useful, the pulse broadening must be “discernible,” which

we define as τ ≳ ϵW = ϵfDCP (W = unscattered pulse width, fDC = pulse duty cycle) with ϵ ∼ 0.1.

Figure 71 shows regions in DM-period space where incoherent deconvolution is feasible for frequencies from 0.1 to

5 GHz assuming a constant duty cycle fDC = 0.05. If a period-dependent duty cycle is used, e.g. fDC ∝ P−1/2,

the curves are not dramatically different except for small periods where the duty cycle is large, requiring a larger

broadening time to satisfy the condition. Since the MSPs used in precision timing have pulse widths much narrower

than predicted by the P−1/2 scaling that applies to long-period pulsars, the fixed duty-cycle curves are appropriate.

50 The transitory pulse shape changes for J1713+0747 represent a counterexample (M. T. Lam et al. 2018b; H. Xu et al. 2021; M. T. Lam
2021; F. X. Lin et al. 2021; J. Singha et al. 2021; R. J. Jennings et al. 2024b)

51 Deconvolution with CLEAN has not been applied to other Stokes profiles, e.g. Q,U, V or L =
√

Q2 + U2. Particular objects may
provide an advantage for discerning the PBF if the Stokes profile is narrower than the total intensity. However, Q,U and V are not
constrained to be non-negative while L, though non-negative, is biased by off-pulse noise that needs subtraction.
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Figure 71. Regions in the DM-Period plane where it is efficacious to incoherently deconvolve the pulse-broadening function. The area

above each line indicates the appropriate DM and pulse-period range for each frequency as indicated by the arrow.

18.5.2. Forward modeling of pulse shapes

Forward modelling involves convolution of an intrinsic profile model with candidate PBFs to identify the best PBF

among a family of PBFs. As discussed in §17.3 , the best model PBFs are those drawn from electron densities with

power-law wavenumber spectra, which can account for the variety of shapes encountered across all degrees of scattering.

However, these (and any other analytical shapes) do not account for PBF distortions from refraction (§11.3), leading to

mismatches between the model and actual PBF. As discussed previously, mis-modelling of the intrinsic shape and/or

the PBF cause bias in the estimated scattering time and ToA.

This procedure can be repeated for each frequency channel, making use of the expected frequency dependence of both

τ and the PBF shape to aid estimation of the PBF parameter vector ΘPL. The resulting ToAs can then be analyzed

to estimate DM and t∞.

Customized profile modeling: As argued in § 12.6.4, profile modeling with the correct shapes for the intrinsic pulse

and PBF can completely remove the ToA error associated with the PBF envelope applicable at a given frequency and

epoch.

A potential modeling scheme can proceed as follows. The PBF envelope p(t, ν; t) depends on the inner scale of the

electron density wavenumber spectrum and is not generally self-similar vs. frequency. In contrast, an exponential

PBF scales only by the single parameter, τ(ν). It is most likely that the inner scale li is epoch independent for most

pulsars, at least over the decades long time spans of PTA data. The key determinants of the PBF shape are β, the

spectral index of the wavenumber spectrum, and the ratio ζ = li/ld(ν), where the diffraction scale ld(ν) depends on the

strength of scattering as well as on β. The method would be applied to each pulsar, requiring a preliminary analysis

to determine basic parameters, and then an epoch-by-epoch analysis to obtain ToAs:

1. Use multiepoch, multi-frequency observations to determine β and li for the line of sight. At each epoch, simulta-

neous fitting over a bank of functions for both the intrinsic pulse and the PBF ideally will yield a determination

of li and β. An analysis similar to this has been done by A. Geiger et al. (2025). In the few cases where li
has been determined, values range from ∼ 35 to ∼ 1000 km (e.g. J. M. Moran et al. 1990; S. R. Spangler &

C. R. Gwinn 1990; L. A. Molnar et al. 1995; N. D. R. Bhat et al. 2004; B. Rickett et al. 2009). The inner scale
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may be associated with the thermal proton gyroradius or the proton inertial length, which involve the electron

temperature, magnetic field, and electron density. Since all of these vary across the ISM, the inner scale almost

certainly varies along an LoS as well as between different LoS.

2. The applicable value of β from pulse shape fitting may show much more regularity than exists in the literature

owing to the bias effects discussed in § 12.7. A working conjecture is that use of a fixed value for β = 11/3 in

pulse modeling will suffice for the estimation of the inner scale in step 1.

3. For a sustained timing program, the intrinsic shape model Um(t, ν) and values for β and li from preliminary

stages are used to model the pulse shape at each epoch and subband, yielding both the e−1 scattering time and

the ToA(ν) as well as additional corroboration for the input values for β and li based on subband to subband

results from the modeling.

Complications in pulse modeling result from interstellar refraction, which causes distortion of the applicable PBF that

varies on refraction times of days for low-DM pulsars and weeks, months, or longer for high-DM pulsars. The severity

of refractive distortion needs to be assessed on a case by case basis. At worst, corrections of ToAs for scattering will

be limited by un-modeled refraction effects so that mere subtraction of a delay estimate based on the e−1 broadening

time of method 1 is the best approach.

18.5.3. Correction of ToAs using extant or contemporaneous estimates of the pulse broadening time τ .

This approach uses a bulk, value for τ based on multiepoch measurements, which cannot correct for rapid FSE errors

that are statistically independent between epochs. It can partially correct for slow, epochal changes in the shape of

the PBF envelope (e.g. from refraction) if multi-epoch measurements are employed. The method involves estimation

in subbands narrow enough so that τ(ν) is close to constant over the subband and then use τ(ν) from all subbands

to correct ToAs for the scattering-induced error ∆tδp. This error is a function of the shapes of the intrinsic pulse and

the PBF with frequency dependence unique to each pulsar. Simulations show that the systematic error is generally

negative for some frequencies and positive for others. This cannot be captured as a Gaussian process but is better

dealt with (for wideband systems) by model fitting ToAs obtained at each individual epoch.

18.5.4. Scattering corrections using template fitting + dynamic spectrum analysis

When scintillation structure is resolved in frequency, scattering corrections to ToAs can be derived from the scintil-

lation bandwidth obtained from the DS. The DS itself is obtained from phase-resolved spectroscopy (PRS) or cyclic

spectroscopy (CS), the choice depending on the ratio of scattering time to pulse width. Using a DS based on the

same data (same time span and frequency band) as the ToA estimate, an autocorrelation analysis of the DS vs. fre-

quency lag yields the scintillation bandwidth. The scattering time then follows from the uncertainty relation (Eq. 9.10),

τ̂d = C1/2π∆̂νd. The ToA correction ∆t
(c)
ν (τ) is generally a nonlinear function of τ dependent on the intrinsic pulse

shape and PBF (§12.7). It therefore needs to be customized for each pulsar as a predetermined lookup table. One

type of error associated with this procedure derives from not knowing the exact value of C1 for real-world PBFs.

Figure 72 identifies areas in the DM-frequency plane where a DS analysis is useful vs. those where scattering is too

large for precision timing or too small to require mitigation. CS is required for large DMs and/or lower frequencies

because ∆νd cannot be resolved with PRS, as indicated. Also shown are the relevant frequency ranges for the same

telescopes indicated in Fig. 69.

The potential for coherent deconvolution is if the field PBF can be determined contemporaneously from the same data

used to calculate ToAs. Doing so makes use of the phase information in the CS to obtain the field PBF h̃ and the

intrinsic pulse shape. This effectively deconvolves the field PBF from the measured voltage signal (e.g. P. B. Demorest

2011; M. A. Walker et al. 2013; N. Palliyaguru et al. 2015; T. Dolch et al. 2021; J. E. Turner et al. 2023, 2024).

Coherent deconvolution strives to use CS to obtain the complex h(t), which is essentially a task of phase retrieval of

its Fourier transform, ϕCS(ν) = arg{h̃(ν)}. This has been demonstrated for the MSP J1939+2134 (B1937+21) but it

has not yet been used to obtain arrival times with greater precision than standard methods.
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One approach uses the phase of
〈
Γh̃(δν, ν)

〉
P≪T≪∆td

,

ΦΓ(δν, ν) = ϕh̃(ν + δν/2) − ϕh̃(ν − δν/2), (18.8)

(where additive noise is ignored) to estimate the derivative for small δν,

dϕh̃(ν)

dν
≃ ΦΓ(δν, ν)

δν
. (18.9)

Upon integration, this yields an estimated phase ϕ̂ h̃ ≡ ϕCS to within a constant. Unfortunately, unless statistical

errors in ΦΓ(δν, ν) are very small, the derived phase will random walk away from the true solution. Also, numerical

evaluation of the phase will inevitably introduce multiple 2π phase wraps that need to be dealt with.

An alternative approach avoids direct use of the phase by seeking an iterative solution for h̃ that yields convergence

to the measured
〈
Γh̃(δν, ν)

〉
P≪T≪∆td

. Simulations demonstrate the viability of this approach on idealized data and

for the bright MSP J1939+2134 (e.g. M. A. Walker et al. 2013; N. Palliyaguru et al. 2015; T. Dolch et al. 2021). As

of yet, the method has not yielded improvements in ToA estimates.

It is possible that coherent deconvolution will be fruitful in future, high S/N data. Though determination of h(t) from

the cyclic spectrum is not unique, it may be sufficient to at least partially correct TOAs and deconvolve the pulse

shape. The regime in which this approach may work is expressed with the inequalities,

WA ∼ 2πτd ≪ P ≤ T ≪ ∆td
Nb

, (18.10)

based on requiring the intrinsic pulse width WA and scattering time to be much less than the pulse period, which in

turn is much less than the time T used to calculate an individual FT. A large number of separate FT blocks need to
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Figure 72. The DM-frequency plane for scattering mitigation using DS analyses. The region between the heavy blue and black lines

is amenable to estimation of scattering corrections with DS obtained either using cyclic spectroscopy (CS) or phase-resolved spectroscopy

(PRS) with the boundary indicated by the red dashed line. DMs below the black line correspond to negligible scattering in no need of

mitigation while above the heavy blue line scintles are too small to allow a DS analysis, The blue dashed line shows the case where the

effective speed is 30 km s−1 rather than 100 km s−1.



143

1

10

100

103

0.4 GHz

Scintillation time
too small

Pulse broadening
too large

0.7 GHz

1 ms 10 ms 0.1 s 1 s
1

10

100

103

1.5 GHz

No correction
d > B/2 d < 10 ns

1 ms 10 ms 0.1 s 1 s

2 GHz

Np = 10 Nb = 100 d = 0.3 td = 0.3

Period (ms)

DM
(p

cc
m

3 )

Figure 73. Regions in the DM vs. period plane where CS is potentially viable at four different frequencies (white). Excluded
regions are based on Eq. I37, I39, and I41 and described in the text.

be averaged to reduce errors. The aggregate time of Nb × T data blocks must be much less than scintle durations

(∆td). The pulsar signal must have high S/N, which is a separate requirement from Eq. 18.10. Using the hockey-stick

expression for τ in Eq. 10.16 and ∆td expressed in terms of τ , we produce the allowed ranges in DM and P shown in

Fig. 73 that satisfy the inequalities of Eq. 18.10. It is clear that coherent deconvolution is viable only for pulsars with

short periods and small DMs for frequencies ∼ 0.4 to 1.4 GHz. The cases shown are for Nb = 100.

In principle, the phase space for coherent deconvolution can potentially be applied to MSPs with DM ≳ 100 pc cm−3

for timing programs covering 0.4 to 2 GHz (or higher). However, signal to noise considerations imply that only a few

MSPs may satisfy the conditions using 100-m class telescopes. However ∼ 300-m class telescopes (Arecibo, FAST,

DSA-2000, and SKA) can enlargen this number. At present, coherent deconvolution requires further experimentation.

Nonetheless, even when a full coherent deconvolution is not possible, the cyclic spectrum a remains a useful tool for RFI

mitigation given the fine frequency resolution it enables. Whether this should be done routinely is a resource-specific

question, but should become increasingly feasible with growing compute power.

18.5.5. Phase retrieval with the Hilbert Transform (HT)

The scintillation spectrum H(ν, t) ≡ |h̃(ν, t)|2, though possessing no phase information, can be used as the basis for

deriving a minimum delay field PBF. As with CS, implementation of an Hilber transform (HT)-based method requires

high S/N data. Though not yet used in scattering mitigation, it may find application in niche circumstances. Here

we summarize the utility of the HT. A more detailed, exploratory analysis is given in NANOGrav Memorandum 9

(2012-2025)52.

Generally a function cannot be determined uniquely from the magnitude of its FT or from its autocorrelation function

(e.g. J. D. Scargle 1981). Additional conditions may yield a unique result, modulo S/N uncertainties as with the CS

approach. A thorough discussion of conditions required for phase retrieval is given in M. V. Klibanov et al. (1995). For

a causal function, the real and imaginary parts of its FT are related by an HT, as with the Kramers-Kronig relations

52 J.M. Cordes, Correction Methods for Interstellar Pulse Broadening, https://nanograv.org/science/memos-white-papers

https://nanograv.org/science/memos-white-papers


144

for dispersion relations in dielectrics. The Hilbert transform yields a phase ϕHT(ν) corresponding to the minimum

delay solution for the time-domain function,

ϕHT(ν) =
1

π
P
∫ ∞

−∞
dν′

ln |h̃(ν)|
(ν − ν′)

, (18.11)

where P denotes Cauchy principal component and |h̃(ν)| =
√
H(ν, t) is the FT magnitude at epoch t for a snapshot

shorter than the scintillation time ∆td. That is, H(ν, t) is well approximated by the DS at a fixed time if the DS has

sufficiently averaged out fluctuations from pulsar self noise. The implied signal flow going from the DS to an HT-based

field PBF is 〈
|ε̃(ν)|2

〉
P≪T≪∆td

−→ |h̃(ν)|2 −→ ϕHT(ν) −→ h̃HT(ν) −→ hHT(t). (18.12)

If the field PBF decreases monotonically, such as the one-sided exponential function, it can be determined uniquely

using the HT. Empirical studies show, however, that PBFs are not monotonic and can be multimodal, albeit with

peaks that generally are substantially smaller than the PBF’s maximum. In this case the width of the HT solution is

biased low. For quasi-monotonic PBFs53, there is a systematic relationship between the width of the HT and actual

PBFs. An example is given in Fig. 15 of Memo 9 cited above, showing that the mean delay of the HT-PBF is on

average ∼70% of the mean of the true PBF. This delay is, of course, not the same as the ToA correction, so further

analysis like that described earlier is needed to relate the PBF width to the correction.

Cyclic spectroscopy may play a role in providing high-resolution intensity dynamic spectra for cases where scintles are

too small in frequency extent to be resolved with standard setups for pulsar timing (i.e. where frequency resolution

is determined by dedispersion contraints). However, data from low-DM pulsars with resolved scintles can be treated

without recourse to CS.

18.6. Assessment of MSPs for scattering mitigation

ToA correctability for a specific MSP depends on its pulse properties, the DM (and scattering) depth along its line of

sight, and especially on observation frequency. Here we evaluate individual MSPs at four frequencies (0.4, 0.7, 1.5, and

2 GHz) for 20% fractional bandwidths using conditions derived in Appendix I. The primary constraint is that the net

arrival time have an error below a specified ceiling of 1µs. Some MSPs require no correction at the higher frequencies

while others cannot be plausibly corrected to this precision.

In the following we use the following units: Frequency ν and bandwidth B are in GHz; period P and pulse width WA

are in ms. The system equivalent flux density (SEFD) Ssys is in Jy and the period-average flux density Sϕ is in mJy.

Scattering times τ1 at 1 GHz are in µs and ∆νd is the scintillation bandwidth in MHz. The effective scattering screen

distance d ′ is in kpc and the effective velocity veff is referenced to 100 km s−1.

Expressions used to assess each MSP are as follows:

1. Scattering times: We evaluate scattering times using the empirical τ(DM) relation (Eq. 10.16 and a frequency

scaling τ ∝ νXτ with index Xτ = 22/5, appropriate for scattering dominated by scales in the inertial subrange of a

Kolmogorov spectrum. High DM pulsars observed at low frequencies will manifest the effects of the inner scale and

reduce the index to Xτ = 4. We invert Eq. 10.16 to obtain a DM value or frequency corresponding to a specified

scattering time.

2. No scattering correction needed: Requiring τ ≤ τmax for a fixed maximum τmax implies a lower bound on frequency.

For τmax = 10 ns (but using τ1 in µs, as above),

ν > (τ1/τmax)1/Xτ ≃ 2.8 GHz × [(10 ns/τmax)τ1]5/22. (18.13)

Figure 69 shows curves of constant τ in the DM -ν plane. These can be used to identify where the scattering time is

too small to warrant correction.

53 I.e. those for which there is a prevailing decay superposed with small bumps.
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3. Scattering too large: Scattering is deemed too large to correct if a 100ϵτ% accuracy determination of τ exceeds

δτmax. Using τ1 and δτmax with the same units,

ν < (ϵττ1/δτmax)
1/Xτ = 0.35 GHz × [(ϵτ/0.01)(τ1/δτmax)]5/22. (18.14)

The nominal 1% accuracy in determining τ is generous in the sense that it is difficult to achieve, causing fewer pulsars

to be ruled out than might be more realistic.

4. Cyclic spectroscopy required: This condition occurs when resolving scintles in frequency requires FFTs longer

than the pulse width. If τ(ν) is small enough, standard phase-resolved spectroscopy (PRS) is sufficient to provide a

dynamic spectrum (DS) from which the scintillation bandwidth ∆νd and τ can be estimated. For PRS, the maximum

FT length is restricted to the pulse width WA, yielding frequency resolution ∆ν ≳ W−1
A . We require that it be a

fraction ϵ∆νd = 0.1 of the scintillation bandwidth, W−1
A < ϵ∆νd∆νd. With WA in ms units,

ν < (2πτ1/ϵ∆νdC1WA)1/Xτ ≃ 0.53 GHz × (τ1/C1WA)5/22. (18.15)

5. Errors on estimates of scintillation bandwidth from a dynamic spectrum: An ACF analysis of the DS yields ∆νd
with errors from radiometer noise (N) and from the finite number of scintles (FSE) spanned by the DS. The fractional

errors are:

(a) Fractional error in ∆νd from radiometer noise (based on PRS with frequency resolution δν = W−1
A ):

ε
(N)
∆νd

≃ 2K∆νdSsys

⟨Sν⟩ϕ

(
WA/P

BTtotalWA∆νd

)1/2

≃10−4 ×
(

Ssys/3 Jy

⟨Sν⟩ϕ/1 mJy

)(
WA

P

)1/2
1√

(B(Ttotal/1 h)WA∆νd]
. (18.16)

(b) Fractional error in ∆νd from the finite number of scintles:

ε
(FSE)
∆νd

≃ N−1/2
s ≃ 8.4 × 10−3 × ν14/5

(
d ′

τ31

)1/4
1√

B(Ttotal/1 h)(v/100 km s−1)
(18.17)

where the number of scintles contributing to the DS is assumed large,

Ns ≃ ηtην(B/∆νd)(T/∆td) ≃ 3960ν−28/5BGHzT1000v100
(
τ31 /d

′)1/2 ≫ 1. (18.18)

Figure 74 shows the number of MSPs that fall into the different correctability categories for four frequency bands.

Assessments are made only if flux density measurements are available in the ATNF pulsar catalog (R. N. Manchester

et al. 2005). Results for the NANOGrav sample (69 objects) are shown in the left panel and for a larger, non-overlapping

sample of 159 MSPs in the right panel.

Trends that can be seen include:

1. The fraction of scattering influenced ToAs (those with scattering times > 10 ns) is sizable at 0.4 GHz in the

NANOGrav sample but declines rapidly with increasing frequency (DISS = diffractive interstellar scintillations).

2. The fraction of scattering influenced ToAs is significantly larger for the 159 MSP sample that excludes NANOGrav

MSPs than for the 69 NANOGrav-only MSPs. This reflects the smaller mean DM for the NANOGrav sample,

⟨DMNANOGrav⟩ = 29 pc cm−3 compared to ⟨DMex−NANOGrav⟩ = 105 pc cm−3.

3. The corresponding mean scattering times are a factor of ten larger for the 159 MSP sample compared to the

NANOGrav sample.

4. The fraction of pulsars that can benefit from scattering determinations from DS analysis depends on whether

rapid or slow distortions of profiles are considered:
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Figure 74. Bar charts showing counts in the scattering categories. Left: NANOGrav pulsars (only those with flux density values included)

Right: Other MSPs with flux density values.

(a) Rapid variations from the finite number of scintles in a DS: about 17% at 0.4 GHz, dropping to 5% at

0.7 GHz and zero at 1.5 GHz and above.

(b) Slow variations from changes in the scattering time and PBF shape (from refraction): about 34% at 0.4 GHz

and 10% at 1.5 GHz.

5. For MSP-frequency combinations that can benefit from a DS analysis PRS suffices for the majority of the cases

while CS is needed for ∼10 to 30%, depending on frequency and whether the NANOGrav or non-NANOGrav

sample is considered.
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Part VI. Prioritizing MSPs for PTA optimization

19. SPIN NOISE TRIAGE

MSPs are used in PTAs because they are much more spin stable than canonical pulsars and, per unit telescope time,

they provide a much larger number of pulses for averaging down emission self white noise (e.g. pulse jitter). However,

red spin noise (or possibly orbital asteroid noise that mimics spin noise) is manifested in some MSPs at levels that can

mask the red GW background signal. Since, by definition, red spin noise is correlated over long time spans, its effects

in a PTA can be averaged down only by summing over a large number of MSPs. This mandates that MSPs should be

culled for PTA science on the basis of displaying minimal spin noise.

To select MSPs for PTAs, red spin noise for a newly discovered pulsar initially can use measurements of the spin period

and its time derivative to evaluate the empirical spin noise scaling law from SC10 (Eq. 4.13,4.14). Actual measurements

of spin noise require a year or more of timing data to distinguish systematic astrometric errors from red stochastic spin

noise. Auxiliary VLBI-based astrometry can aid this process (D. R. Madison et al. 2013; J. B. Wang et al. 2017), but

it too requires at least a year of data to measure proper motion and parallax. In addition, linking the extragalactic

and solar-system reference frames poses additional uncertainties at the early stages of a VLBI program (N. Liu et al.

2023; A. Evgenievich Rodin 2024).

The current pulsar sample comprises ∼ 3750 pulsars including ∼ 545 MSPs with periods P ≤ 10, ms of which 356

are not in globular clusters (R. N. Manchester et al. 2005). These numbers are expected to grow dramatically from

ongoing pulsar surveys given that the total number of active pulsars in the Galaxy may be as large as 100k (e.g. J. K.

Swiggum et al. 2014). A model dependent estimate is that only about 20% of MSPs are sufficiently spin stable over a

ten-year span to be useful for inclusion in a PTA (R. M. Shannon & J. M. Cordes 2010). Other factors of course also

limit inclusion, including all of the effects discussed previously.

A reasonable approach is to place a cap on the predicted RMS spin-noise over a specified time block for an MSP to

warrant inclusion in a PTA. We estimate the data span Tr ∝ σ
1/2
spin noise needed to reach a nominal maximum level of red

spin noise σspin noise = 0.1µs; it utilizes the SC10 scaling law (Eq. 4.13) along with the assumption that spindown rates

ḟs follow that for magnetic dipole radiation. This yields the time needed for the RMS spin noise to reach σspin noise,

Tr =

(
σspin noise

C2fs
αr |ḟs|βr

)1/γr

≃ 0.4 yr

(
P 0.95
ms

B1.1
9

)(
σspin noise

0.1µs

)1/2

, (19.1)

for spin periods in ms and surface fields B = 109B9 G. We have expressed ḟs in terms of the surface magnetic field

assuming magnetic dipole radiation dominates spindown of the neutron star. The surface magnetic field is related to

Ṗ by Bsurface = 109B9G where B9 ∼ 3.2(PṖ−20)1/2 with Ṗ−20 = Ṗ /(10−20 s s−1).

Fig. 75 shows Tr vs. spin period for surface magnetic field strengths that span MSPs to magnetars, with recycled

pulsars in double NS binaries and canonical pulsars in between. Most MSPs have estimated surface fields between

108 and 109 G. The figure indicates that the lowest field objects will take several years for spin noise to be manifested

in timing residuals whereas those with the shortest periods and larger fields ≳ 109 G will show red spin noise in less

than a year. A similar approach can be used to prioritize MSPs with negligible spin noise on time scales of interest

for GW detection (tens of years) and those with spin noise too large to be useful.

Timing stability better than 0.1µs over a span T = 10 yr, say, requires short period MSPs with the smallest magnetic

fields. Objects with larger spin noise can be included in PTAs if their number Npulsar is large enough to average spin

variance down as N
−1/2
pulsar detection statistics for correlated Earth-term GW effects.
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Figure 75. Time Tr needed for a timing data set to yield red spin noise at an RMS level σspin noise = 0.1µs vs spin period.

It scales as Tr ∝ σ
1/2
spin noise. Lines are shown for surface magnetic field strengths from 108 to 1014 G. Ellipses indicate the

approximate locations of distinct pulsar populations: MSPs, double neutron star binaries (recycled component), canonical
pulsars, and magnetars. The curves are only indicative of approximate times because there is substantial variance in the red
spin noise scaling law and they are based on a simplistic relation between field strength and spin frequency derivative based on
the magnetic dipole scaling (i.e. a braking index n = 3).

20. EVALUATING TIMING QUALITY OF INDIVIDUAL PULSARS

As pulsar timing methodology has developed over the last few decades, several factors that influence the utility of a

pulsar for precision timing applications have been identified. So far the achievable S/N of an average pulse profile has

been the dominant factor for many objects, though pulse distortions from interstellar propagation are also prominent.

However, arrival time precision is only part of the story because other physical effects influence the true arrival

times. The regularity of pulse periodicities is affected by stochastic effects occurring in or near the NS such as spin

fluctuations, emission fluctuations, and orbital noise that alter arrival times. Interstellar delays, if imperfectly removed,

also contribute to the overall timing noise budget for a pulsar.

Here we define quality measures that enable a thorough comparison of MSPs with regard to achievable ToA precision

and timing stability. In aggregate the measures can be used for assessing whether a given MSP would be competitive

among other MSPs in its contribution to the overall sensitivity of a pulsar timing array (PTA). For other applications

where a pulsar is monitored for purposes unique to it, such as orbit and mass determinations, the quality measures

provide the basis for ToA optimization, such as using longer integration times or alternative radio bands.

We define quality measures (QMs) Qa such that larger values mean better ToA precision or better timing stability,

where a = SNR,J,DISS, spin,PBF,DM(t),DM(ν). The first three of these correspond, respectively, to ToA errors

from the finite SNR of a pulse profile, from pulse jitter, and diffractive scintillations that perturb ToAs on short time

scales (seconds to hours). The others produce slowly changing perturbations from spin variations and changes in DM

and scattering as the line of sight traverses different ISM electron density fluctuations.

Table 9 summarizes the QMs with partial scaling laws and pointers to equations developed later in this section.

Mitigation possibilities are also listed.

Several phenomena are not included in this brief inventory of quality measures. First are those that represent departures

from the assumed average pulse shape stability vs. epoch. By and large, average profiles and their chromaticity appear



149

Table 9. Pulsar Timing Quality Measures a

Measure Expression b, c Eq. Number Mitigation/Comments d

Rapid TOA Variations (≲ hours)
QS/N 6.8(P/ncW 3)1/2Sϕ 20.1 SEFD, B, Tint

QJ 30/(3Wc

√
P ) 20.3 Tint

QDISS 21.2(νv100)1/2/(Dτ)1/4 20.5 DM, ν, B, Tint

Slow TOA Variations (≳ days)
Qspin 252P 0.8Ṗ−1.1

−20 T−2
yr 20.6 None except pulsar choice

Qτ τ−1 20.9 Fitting vs. ν, DM, ν
QDM(t) 32 ν1/6(1−R−2)[(v100∆tdays)

2τ/D]−5/12 20.11 DM, Simultaneous ν coverage

QDM(ν) 1.9 ν1/6τ−5/6I−1
t∞ (R, β = 11/3) 20.13 DM, Fitting function vs. ν.

Coefficient is for R ∼ 2 .
Total QM

∑
j wjQj

aUnits:
All quality measures have units of µs−1.
Telescope/observation parameters: Ssys = 3Jy, npol = 2, B = 0.1GHz, Tint = 103 s, ν = 1GHz, R = ν/(ν −B).

Pulsar parameters: Sϕ in mJy, D in kpc, P in ms; Ṗ−20 = Ṗ /(10−20 s s−1);
W,Wc, τ in µs; nc dimensionless, DM in pc cm−3, v100 = v⊥/(100 km s−1).

b Scaling laws show pulsar-dependent parameters but telescope/observation parameters are implicit; see indicated equation numbers
for dependences.

c τ can be measured directly or from the scintillation bandwidth, τ ≃ (2π∆νd)
−1. It can also be estimated from the τ(DM) ‘hockey

stick’ relation, τ(µs) ≃ ν−4.4(DM/303)3/2[1 + (DM/30.4)3].

dMitigations: choosing pulsars (and telescope parameters) with large QMs optimizes a PTA.
DM: smaller DM, Ssys: smaller Ssys = system equivalent flux density, ν: higher frequency, B: larger bandwidth, Tint: longer
integration time.

to be epoch-independent once instrumental factors are accounted for (e.g. P. R. Brook et al. 2018). A few notable

exceptions are discussed in § 6.4.

Second are telescope site dependent factors, especially the level of radio frequency interference (RFI) that differs greatly

between sites and is episodic (e.g. diurnal variations) and worsening secularly. Another is calibration methodology

that mitigates instrumental polarization. The generally large linear (and sometimes significant circular) polarization

fraction among pulsars requires accurate calibration to avoid pulse shape changes that affect ToA estimates. The

efficacy of polarization calibration is intertwined with contamination from RFI and is therefore equally difficult to

quantify.

Third is orbital noise from asteroids or from spin-orbit interactions in “black widow” binaries where white dwarf

companions undergo ablation from the pulsar wind, producing variable amounts of orbital debris. Black widow pulsars

are generally excluded from PTAs for this reason, but the presence of an asteroid belt is plausible, though it has not

been firmly established for any MSP.

After defining quality measures, we apply them to MSPs in the current NANOGrav PTA to better understand how

different MSPs contribute to detection of the stochastic GW background. We then recalculate the quality measures for

anticipated improvements in telescope sensitivity and greater flexibility in frequency band usage and time allocations

on a pulsarby-pulsar basis.

20.1. Quality measures for fast ToA fluctuations

Additive noise in template fitting, pulse jitter, and diffractive scintillations perturb arrival times that change during

intraday observing sessions (e.g. M. T. Lam et al. 2016b). The template fitting error depends on properties of both

the pulsar and the telescope. Jitter is intrinsic to the pulsar while diffractive scintillations are caused by the ISM along

the line of sight. The template fitting error is a white noise process vs. both time and frequency. Jitter is also a white
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noise process vs. time but is highly correlated across frequency. DISS differs by being correlated over finite ranges of

time and frequency: seconds to hours and kHz to 100s of MHz, respectively.

We assess these three processes separately and later combine them as a weighted sum.

20.1.1. Template fitting

The quality measure is the reciprocal of the ToA error σt
−1
S/N

from Eq. 6.6 - 6.10,

QS/N = σt
−1
S/N

∝ Sϕ

(
nc2P

n2c1W
3
c

)1/2

. (20.1)

An expression for S/N is given in Eq. 6.5. Pulsars rank higher if they are brighter, have longer periods, and have

profiles with narrower (and more) components54.

A more sensitive telescope or longer net integration time can improve a weaker pulsar to the same timing precision as

a stronger pulsar with identical period and pulse-shape factors. A quality measure that excludes the flux density is

QS/N,no flux =
QS/N

⟨Sν⟩
∝
(
nc2P

n2c1W
3
c

)1/2

. (20.2)

Among pulsars in the NANOGrav 15-yr data set, the largest QS/N are for J1939+2134 (B1937+21), J0437−4715, and

J1909−3744 in rank order while for QS/N,no flux, which excludes flux densities, J1909−3744 has the top rank owing to

its narrow pulse followed by B1937+21. Dropping to 54-th is J0437−4715 due to its wide pulse and longer period.

20.1.2. Pulse jitter

The rms ToA error from pulse jitter is given by Eq. 7.3 - 7.5. If we account for nc separate components with the same

width Wc and same jitter parameter, the ToA error is smaller by a factor
√
nc4/nc2 where nc4 =

∑
j(aj/amax)4 ≤ nc2 .

The jitter quality measure is then

QJ = σt
−1
J

=
1

FJWc

(
nc2

n
1/2
c4

)(
Tint
P

)1/2

. (20.3)

The jitter measure favors pulsars with more narrow components and shorter periods.

20.1.3. Diffractive ISS PBF variations (‘finite scintle effect’)

For pulsars that show strong scintillations, RMS ToA errors associated with stochastic variations in the PBF are

∼ τ/N
1/2
s , where the number of scintles Ns is given by Eq. 12.33. For nearby pulsars and high-frequency observations,

the number of scintles is small, but no less than unity as long as strong scintillation applies. Above a transition

frequency of about 2 GHz for the nearest pulsars, scintillations become weak and PBF variations become unimportant.

However, PTA programs use widely spread frequencies that invariably include those where scintillations are strong

even if higher frequencies are not.

Using τ ≃ dsoθd
2/c along with ∆νd = C1(2πτ)−1 and ∆td ∼ ld/veff where ld ∼ λ/2πθd, we obtain

σtDISS
=

τ

N
1/2
s

≃ [cd ′τ(ν)]1/4

2π
√
ηνηtBTνveff

(20.4)

where the broadening time τ is measured at frequency ν.

54 Note nc1 ≤ n
1/2
c2 by the Cauchy-Schwarz inequality. If all nc components have the same amplitude, then QS/N ∝ √

nc.
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The DISS quality measure is the inverse of σtDISS
(Eq. 12.37 - 12.38),

QDISS = σt
−1
DISS

=
2π

√
ηνηtBTνveff

[cd ′τ(ν)]1/4
(20.5)

This measure favors pulsars that are less scattered, closer, and have higher effective velocities.

20.2. Quality measures for slow timing variations

20.2.1. Spin fluctuations

We use the results given in §4.5 and express σtspin in terms of period P = ν−1 and period derivative Ṗ = −ν̇P 2 to

obtain a quality measure

Qspin = σt
−1
spin

= C2P
α+2βṖ−βT−2 ≃ 252µs−1P 0.8±0.22

ms Ṗ−1.1±0.1
−20 , (20.6)

where Ṗ−20 is Ṗ in units of 10−20 s s−1 and the spin period is in ms.

This measure appears to favor longer periods and smaller period derivatives. However, P and Ṗ are related using the

relation for the surface magnetic field B ∝
√
PṖ , yielding Qspin ∝ B−2βPα+3β . The net effect is that MSPs with low

magnetic fields have larger Qspin than canonical pulsars in spite of the period dependence that favors longer-period

pulsars.

20.2.2. Long term variations of the pulse broadening time

To develop this quality measure, we employ a simplified timing model for two-frequency observations. A more detailed

account would address the use of broadband receivers covering 2:1 or larger frequency ranges. Denoting arrival times as

tν ≡ t(ν) and t1,2 = tν1,2 at two spot frequencies with ν2 > ν1 , we naively model them with tν = t∞ + tDM +ε(t) using

a dispersion delay tDM = ν−2KDM DM and a (for now unspecified) chromatic error term ε(t) adding to the desired

‘infinite frequency’ ToA, t∞. The errors in the estimated DM and t∞ are similar to the analysis yielding Eq. 12.13 -

12.14 in § 12.2.1,

δD̂M ≡ D̂M − DM =
ν22(ε1 − ε2)

KDM(R2 − 1)
, and δt̂∞ ≡ t̂∞ − t∞ =

R2ε2 − ε1
R2 − 1

, (20.7)

where, as before, the frequency ratio R = ν2/ν1 > 1.

If exact templates are used at the two frequencies, the systematic errors ε1,2 = 0. (Recall we are analyzing the no

radiometer-noise case here and we furthermore ignore any intrinsic chromaticity of the pulse shapes). This applies if

the PBFs and intrinsic pulse shapes are known exactly. This is never the case, as we have demonstrated, so systematic

ToA errors arise from epochal variability in the pulse shape whether intrinsic or, more likely, from changes in the PBF.

As seen in § 12.6.1 - 12.6.4, ToA errors due to mismatched templates from scattering can exceed the scattering time

τ , especially for small τ values, and are a different proportion of the scattering time at different frequencies. Also,

depending on template choice, the ToA error can be of either sign. Given the variety of conditions and choices, we

take a simplified approach to develop a metric.

We proceed by associating the systematic error with a multiple of the scattering time, ϵ1,2 = m1,2τ1,2 and we adopt a

frequency scaling τ ∝ ν−xτ with xτ = 22/5 and ζ = li/ldθ
∝ ν−6/5 for the Kolmogorov inertial subrange regime.

For low-DM MSPs, τ/Wu ≪ 1 and ζ is also small at L-band frequencies. For example, scaling τ = 0.1µs at 1 GHz

implies τ/Wu ∼ 10−3 for a 100µs pulse width and using Eq. 12.40, ζ ≲ 0.1 even at 0.4 GHz. Inspection of Fig. 55

then shows that δt̂∞/τ ≃ m1 ∼ m2 ∼ 2.5 for the entire frequency range ≳ 0.4 GHz. For R2 ≫ 1 (wide frequency

separation), the error is approximated as

δt̂∞ ≃ −m2
√
τ1τ2 = −m2τ0(ν1ν2/ν

2
0)−xτ/2. (20.8)
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If τν were constant vs. epoch this error would simply be an unimportant bias in ToAs that would be absorbed in

the timing analysis if observing frequencies were the same at all epochs. However, as shown in §11.3, refraction

from large-scale electron density fluctuations in the ISM will cause τν to vary on time scales from days to years for

weakly scattered and strongly scattered pulsars, respectively. In principle, these variations can be partially mitigated

by measuring the scintillation bandwidth ∆νd ∝ τ−1 at each epoch vs. frequency and correcting ToAs accordingly.

Actual RMS variations in τ appear to be as large as 100% and correction of ToAs will not be perfect.

We define a quality measure from Eq. 20.8 by simply using the reciprocal of τ(ν), the scattering time at a fiducial

frequency ν and using the τ(DM) expression of Eq. 10.16,

Qτ = τ(ν)−1 ≃ 1µs−1 × ν4.4(DM/303)−3/2[1 + (DM/30.4)3]−1. (20.9)

This measure favors less scattered pulsars and/or ToAs obtained at higher frequencies. While the ToA error is

dominated by the lower (or lowest) frequency used in a multi-frequency timing program, a comparison of pulsars can

use a single representative frequency for evaluating Qτ . However, any detailed comparison needs to consider specific

radio frequencies used for observations of different MSPs.

20.2.3. Temporal DM variations and asynchronous multifrequency observations

Most extant timing data have relied on multiple frequency measurements obtained at different epochs. M. T. Lam

et al. (2015) evaluated the timing error incurred from measurements made at slightly different epochs in terms of the

DM structure function. For epoch separations of ∆t (a few days or less), the ToA error is given by Eq. 12.7 - 12.9 and

the quality measure is evaluated for β = 11/3 as the reciprocal,

QDM(t) = σt
−1
∞

= 2πνh(1 −R−2)

[
∆t

∆tISS(νh)

]−5/6

(20.10)

An alternative form follows by expressing ∆tISS in terms of the pulse-broadening time and effective velocity,

QDM(t) = (2πνh)(4−β)/2(1 −R−2)(veffTint)
−(β−2)/2

[
τ(νh)

cd ′

]−(β−2)/4

≃ (2πνh)1/6(1 −R−2)(veffTint)
−5/6

[
τ(νh)

cd ′

]−5/12

. (20.11)

20.2.4. Frequency-dependent DMs

Timing errors (RMS) from the frequency dependence of DM are given by Eq. 12.29. We evaluate it using a constant

geometric factor Gβ = 1. The resulting QM is

QDM(ν) = σt
−1
DM(ν)

=
6.41µs−1 ν23/6

dso
5/6SM−3.5It∞(R, β = 11/3)

. (20.12)

Casting SM in terms of the pulse broadening time, we have an alternate form

QDM(ν) =
1.88µs−1 ν1/6

τ5/6It∞(R, β = 11/3)
. (20.13)

This measure also favors less-scattered pulsars but is agnostic to effective velocity.

For our analysis below, we use a nominal 2:1 ratio that gives It∞(R = 2, β = 11/3) ∼ 1. A PTA comprising pulsars

with a wide range of DMs and different frequency ranges would likely be used for different objects; in that case It∞
would be included in the evaluation of σδt∞ and the quality measure.
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Figure 76. Quality measures for 63 MSPs ordered using QS/N in the first column. Darker horizontal lines indicate quartile
boundaries in QS/N. Also shown in the first column with fainter symbols is QS/N,no flux, which measures the relative potential
for improved ToAs using more sensitive telescopes; it has been rescaled to cover the same range as QS/N. The next five columns
are for QJ, QDISS, Qspin, QDM(t), and QPBF as defined in the text. The last column gives the weighted sum QΣ of the logarithms
of the other Q values. Vertical dashed lines indicate quartile boundary values for QΣ. Pulsars in bold font are discussed as
exemplars of timing quality in NANOGrav’s detector characterization paper (G. Agazie et al. 2023c).
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20.3. Meta-analysis of quality measures

Figure 76 shows Q values for 63 pulsars in NANOGrav’s timing program. Pulsars are ranked according to QS/N in the

first column, which also shows QS/N,no flux values as fainter symbols. The Q values for each of the first five columns

are normalized to unit maximum and the last column gives the weighted sum

QΣ =
∑
j

wj logQj , j = (S/N, J, DISS, spin, DM(t), PBF). (20.14)

Weights sum to unity,
∑
j wj = 1. We use logarithms (base 10) to mitigate the dominance of any one quality measure

given the several to many orders of magnitude that they span.

20.3.1. Initial MSP comparisons

For the initial comparison shown in Figure 76, we use weights wj = (0.35, 0.05, 0.05, 0.35, 0.1, 0.1) that reflect current

NANOGrav observations where most MSPs have ToA estimates limited by template fitting errors with some contri-

bution from jitter and DISS and where overall timing residuals receive contributions from red spin noise, unmodeled

epoch-dependent DM variations, and changes in the pulse broadening from scattering. Vertical dashed lines in the

last column indicate divisions between quartiles of QΣ. Four ‘exemplar’ pulsars indicated in bold font, J0509+0856,

J1903+0327, J1909−3744, and J1939+2134 (B1937+21), are discussed in detail in NANOGrav’s 15-yr detector char-

acterization paper (G. Agazie et al. 2023c).

Inspection of the first column shows that B1937+21 has the best quality with respect to ToA precision obtained from

template fitting but it is in only the second to best quartile of QΣ because it manifests significant red spin noise (or

possibly stochastic asteroid noise (R. M. Shannon et al. 2013) and scintillations also contribute to short-time scale

TOA perturbations (M. T. Lam et al. 2016b).

Comparison of the values shown in the first two columns indicate that ToAs can be improved for a significant number

of pulsars. If all pulsars are timed with the same telescope, receiver, and integration time, QS/N is the relevant

quantity for comparing MSPs. However, a significant number of pulsars show values for QS/N,no flux (faint symbols)

that substantially exceed QS/N. This indicates that they possess intrinsic properties (period, pulse width, and number

of pulse components) that can be exploited to optimize ToAs by using longer integrations or a larger telescope (for

example). By contrast, J0437−4715 ranks second in QS/N because it is bright but is intrinsically worse than many

MSPs because it has a wide pulse. Nonetheless with weights that favor QS/N and the proximity of the pulsar to the

solar system (hence small interstellar effects), this pulsar has a large QΣ. In the next section we use an alternate

scheme that weights spin noise more strongly and puts J0437−3744 at much lower rank. The third ranked pulsar in

QS/N, J1909−3744 (another exemplar) ranks in the first quartile of QΣ because it has a narrow pulse and has small

interstellar contributions.

The two remaining exemplars, J0509+0856 and J1903+0327, rank in the second lowest and lowest quartiles of QΣ,

respectively. The first of these has poor values of QS/N and QS/N,no flux. The large interstellar contributions to the

timing of the large-DM object J1903+0327 make it the lowest ranked object of the entire set of pulsars in QDM(t),

QPBF, and subsequently QΣ. In principle, the timing of this pulsar could be improved significantly using observations

at higher frequencies, as discussed in M. T. Lam et al. (2018a), especially with a future large collecting area telescope

such as the Next Generation Very Large Array (ngVLA).

20.3.2. Forward looking MSP comparison

Future timing observations generally will be made with more sensitive telescopes having greater collecting areas and

improved receivers. For these, errors associated with S/N become secondary for many objects. Wideband systems

deployed on current and future telescopes will minimize or eliminate timing errors associated with temporal DM

fluctuations, though frequency-dependent DMs would be important for low frequency observations of higher DM

objects (J. M. Cordes et al. 2016). For these reasons we compute a second sum that weights jitter, spin, and DISS

more strongly, wj = (0.25, 0.15, 0.15, 0.35, 0, 0.1).
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Table 10. Top two pulsar quartiles ranked by
ΛΣ.

MSP Quartile ΛΣ QΣ log10 QS/N

J1745+1017 1 0.68 0.57 0.66
J0931-1902 1 0.66 0.54 0.66
J1640+2224 1 0.64 0.48 0.62
J2317+1439 1 0.63 0.39 0.62
J2043+1711 1 0.63 0.49 0.58
J2124-3358 1 0.63 0.79 0.64
J1713+0747 1 0.63 0.79 0.67
J1832-0836 1 0.63 0.72 0.58
J1744-1134 1 0.62 0.75 0.66
J0030+0451 1 0.61 0.49 0.62
J1909-3744 1 0.61 0.85 0.59
J2229+2643 1 0.60 0.31 0.59
J2010-1323 1 0.60 0.59 0.60
J0613-0200 1 0.60 0.82 0.62
J1853+1303 1 0.59 0.61 0.57
J1125+7819 1 0.59 0.52 0.62
J0645+5158 2 0.59 0.32 0.58
J1911+1347 2 0.58 0.79 0.57
J2234+0611 2 0.58 0.57 0.56
J2145-0750 2 0.58 0.77 0.64
J1012+5307 2 0.55 0.68 0.57
B1855+09 2 0.55 0.68 0.57
J1630+3734 2 0.55 0.48 0.53
J0740+6620 2 0.55 0.58 0.51
J0437-4715 2 0.54 0.96 0.62
J0751+1807 2 0.54 0.54 0.55
J1730-2304 2 0.53 0.68 0.57
J1944+0907 2 0.53 0.70 0.52
J2017+0603 2 0.53 0.38 0.49
J2302+4442 2 0.52 0.61 0.54
J1946+3417 2 0.51 0.43 0.49

We also employ a sigmoid transformation that normalizes all of the (log) quality measures into the same range, [0, 1],

and further limits the domination of an aggregate quality measure by any single measure. Using a logistic function

S(x) = (1 + e−x)−1 and letting lj ≡ logQj we transform the measures using the median lm and RMS σl to calculate

a weighted sum ΛΣ of Λj ∈ [−1, 1], where

Λj = S
(
lj − lm
σl

)
, ΛΣ =

∑
j

wjΛj . (20.15)

Results are shown in Figure 77, which demonstrates how the new weights affect the placement of pulsars and especially

the exemplar MSPS. Table 10 lists the MSPs in the top two quartiles.

To enable MSP comparisons more visually, Figure 78 shows Λj for each pulsar plotted as a closed curve calculated

from a spline fit to the individual values. Objects are divided into four quartiles in ΛΣ. The enclosed area of each

curve is normalized by the area (π) of the unit circle and the average normalized area is given for each quartile. An

ideal pulsar would appear as the circle shown with unit radius and would have unit normalized area.

The heavy black lines in the figure correspond to the four exemplar objects discussed above. One of the best pulsars

in PTA observations is J1909−3744 and it correspondingly falls in quartile 1. The large DM (297 pc cm−3) MSP

J1903+0327 is in the fourth quartile because its large scattering is not compensated by other factors. The other two

objects are in the third quartile for differing reasons: B1937+21 shows large achromatic spin noise and large interstellar

contributions that outweigh its high quality in terms of its jitter and S/N, while J0509+0856 has a large template

fitting error given its wide pulse, which is about 15 times wider than those from J1909−3744 and B1937+21 and three

times that of J1713+0747.
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J1918 0642
J0610 2100
B1937 + 21
J1312 + 0051
J1811 2405
J1022 + 1001
J2234 + 0944
J1923 + 2515
J0023 + 0923
J1024 0719
J1600 3053
J0509 + 0856
J1614 2230
J1719 1438
J1738 + 0333
J2322 + 2057
J2302 + 4442
J2017 + 0603
J1944 + 0907
J1730 2304
J0751 + 1807
J1630 + 3734
J1012 + 5307
J1946 + 3417
J0740 + 6620
B1855 + 09
J0437 4715
J2145 0750
J1911 + 1347
J0645 + 5158
J2234 + 0611
J1125 + 7819
J1853 + 1303
J0613 0200
J2010 1323
J2229 + 2643
J1909 3744
J1744 1134
J0030 + 0451
J1713 + 0747
J2317 + 1439
J2043 + 1711
J1832 0836
J1640 + 2224
J2124 3358
J0931 1902
J1745 + 1017

Figure 77. Quality measures for 63 MSPs ordered using Q ′
Σ in the first column. Darker horizontal lines indicate quartile

boundaries. Other columns show individual transformed Q values, including both Q′
S/N and Q′

S/N,no flux in the second column.
Pulsars in bold font are discussed as exemplars of timing quality in NANOGrav’s detector characterization paper (G. Agazie
et al. 2023c).
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Quartile 1

S/NJ

DISS

spin

PBF

A = 0.33
Quartile 2
A = 0.25

Quartile 3
A = 0.19

Quartile 4
A = 0.12

Figure 78. Logistic quality measures for 63 MSPs split into four quartiles in ΛΣ. For each pulsar a closed curve is plotted
that connects Λ values on axes corresponding to each of the individual measures. The average enclosed area of the curves is
given for each quartile, normalized to unit maximum for the ideal pulsar. The four thick black curves correspond to the four
exemplar objects discussed in the text. The high quality MSP J1909−3744 is in quartile 1 while J1939+2134 (B1937+21) and
J0509+0856 are in quartile 3 as the upper and lower black curves, respectively, and the large-DM MSP J1903+0347 is in the
fourth quartile due to its large consequential scattering.
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Part VII. Summary and Recommendations

This review presented an end-to-end study, from the neutron star to the radio telescope, of effects and processes that

influence the utility of radio pulsars in timing metrology.

We emphasize again that the best timing precision is obtained from millisecond pulsars due to their much lower spin

noise compared to other pulsars and because, in a fixed measurement time, they provide a much larger number of

pulses for averaging down pulse jitter. However, not all MSPs are suitable for the most demanding application: as

detectors of long wavelength (light year) gravitational waves. A combination of spin noise, diverse pulse widths and

jitter, gravitational potential noise (in globular clusters), and measurement noise combine with stochastic interstellar

propagation to render only about 20% of MSPs suitable. Some, but not all, of these factors can be mitigated.

We summarize key findings below, placing emphasis on considerations for inclusion of MSPs in PTAs and on the

opportunities and limits for TOA error mitigation.

21. BUILDING A PULSAR TIMING ARRAY

A useful way to summarize our results is to consider building a PTA from scratch. This first involves selecting MSPs

based on criteria like those already used for existing PTAs and using elements from our study. Next is to optimize

ToA estimation and identify constituents of the covariance matrix used for ToA modeling.

We describe the main steps as follows, where we take a forward looking approach that assumes broad frequency

coverage during observations at a single epoch. Simultaneous measurements over a 3:1 frequency range, for example,

allow ToAs to be optimized for each epoch at the ‘front end’ of an overall pipeline rather than through covaiance

matrix modeling that is applied to multiepoch ToAs. We also eschew usage of dimensionless fudge factors (e.g. EFAC

and ECORR) to alter error contributions from template matching and pulse jitter, which actually can be calculated

using known information about observations for each pulsar.

1. Select/cull pulsars for the array: Some pulsars are simply unsuitable for high-precision timing, due to effects

that are both intrinsic (primarily, red spin noise) and extrinsic (e.g., ISM-induced timing errors). To aid the

selection of MSPs for PTAs and identify methods for optimizing timing programs, we developed a set of metrics

for assessing pulsar quality. These metrics take into account timing errors related to spin noise, pulse jitter,

the signal-to-noise ratio of pulse measurements, and interstellar scattering, each with its own quality factor that

are combined into a composite quality factor. These were applied to and calibrated against the current MSP

sample in NANOGrav’s PTA. Appendix K describes Python code that calculates quality factors for any MSP
either in absolute terms or in comparison with the current best MSP observed in multiple PTA programs, MSP

J1909-374455.

Spin noise, in particular, cannot be mitigated when it is too large; it can only be avoided by excluding pulsars

from a PTA. Spin noise is achromatic (not dependent on radio frequency) and is to some extent degenerate

with power-law noise in the stochastic GW background. Fortunately they can be distinguished by the fact that

GW perturbations are partially correlated between pulsars, while spin noise is of course not. In principle, GW

detection involves combining signals from all pulsars in the PTA to build up the GW signal relative to other red

noise contributions, which are statistically independent between MSPs. However, there are insufficient numbers

of MSPs in current PTAs to allow inclusion of those with large spin noise because they will inhibit GW detection

and characterization. In special cases, such as a CP orbiting a black hole, the value of the target pulsar target

may override concerns about red noise.

2. Design an optimized observing program: Once pulsars have been selected for a PTA, an optimal combi-

nation of observing frequency, dwell time, and cadence must be determined. These considerations should take

into account the following factors:

55 The code is available on GitHub (https://github.com/jmcordes/PTQ))

https://github.com/jmcordes/PTQ)
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Large observing bandwidths are critical for precise estimation of all chromatic noise effects, most of which are

induced by propagation through the ISM. Wideband systems provide greater bandwidth and thus larger pulse

signal-to-noise ratios, and they can provide better determination of plasma propagation terms in the arrival time

equation. However, wideband systems are also subject to departures of the simplest dispersion law (∆t ∝ DM/ν2)

caused by multipath propagation. The choice of observing frequency thus involves a trade-off between pulsars’

steep intrinsic spectra, which yield higher flux densities at lower frequencies, and ISM-induced timing errors,

which also increase inversely with frequency.

The optimal dwell time should beat down pulse jitter, but will also depend on the ISM characteristics along the

LoS. In general, the scaling of jitter-induced timing errors with integration time means that shorter integrations

can be accommodated for pulsars with shorter periods and narrower pulse components. However, when the

scintillation timescale is long compared to the dwell time, one must consider TOA variance due to diffractive

scintillation (the finite scintle effect). Large observing bandwidths mitigate the finite scintle effect, and thus

provide another means of optimizing the dwell time per pulsar.

The cadence of observing epochs is most relevant when combining datasets that cover disparate frequency bands

in order to determine DM (as well as scattering). The TOA error induced by asynchronous DM estimation scales

almost linearly with the temporal separation between observing epochs (e.g. Eq. 12.9). Here again, wideband

systems reduce the need for observations at different frequencies made at slightly different epochs, because the

DM can be determined more precisely from a single observing epoch with a single receiver.

3. Estimate ToAs at each epoch, including corrections: Individual TOAs should be optimized empirically at

each epoch. Even with suitable choices of template, ToA errors in excess of those expected from idealized matched

filtering are expected. Equation 17.17 illustrates the full arrival time equation, including timing delays from all

relevant effects. Terms that are most amenable to correction are tmismatch and the average DM term (epoch

dependent, achromatic); this latter term is addressed by all current ToAs but may not have been optimized with

respect to the influence of scattering. Terms that may be partially correctible include ∆tJ and ∆t
(all)
δp . A jitter

correction may emerge from PCA applied to pulse profile sequences; attempts to date have given only modest

improvements. Short term PBF variations (finite number of scintles) may be correctible if scintillations are

carefully monitored through DS with sufficient time and frequency resolutions. Uncorrectable terms or residual

errors include ∆tS/N, ∆tJ, and ∆t
(all)
δp . Optimized observations and processing can minimize these but they are

mostly irreducible. We now discuss possible corrections.

Rapid profile variations and resulting ToA errors: Systematic template mismatch, pulse jitter, and rapid PBF

variability (finite scintle effect) are potentially correctible, to varying degrees. Template mismatch produces a

systematic error while jitter and the FSE effect yield random errors. Jitter is potentially correctible if the net

profile change in an N -pulse average is systemtically related to the TOA offset. The FSE effect is correctible if

CS can be used to determine the instantaneous PBF on time scales ≲ ∆td, the DISS time scale ∼minutes.

Slow changes correlated over multiple epochs: Intrinsic profile changes, like the transitory events seen in MSP

J1713+0747, which eventually decay to the pre-event profile shape, can be mitigated through epoch-dependent

profile modeling. This can be done using PCA, for example, but whether it is better than simple excision of

ToAs from epochs during an event needs to be evaluated on a case-by-case basis. It is not known whether such

events are peculiar to J1713+0747 or also occur in other objects.

Several ISM perturbations have time scales on the order of ∆tr, the characteristic time scale for RISS (refractive

scintillations). In general, this is determined by the transverse extent of the bundle of scattered rays and the

speed with which the LoS changes. For a single, thin screen along the LoS the width of the ray bundle ∼ lr and

net time scale are simply related and the characteristic refraction timeis ∆tr ∼ lr/veff (c.f. Table 4).

ISM perturbations include slow departures of PBFs from the ensemble shape due to variable refraction, which

shifts the ray bundle, slow AOA variations that alter the translation of ToAs to the SSBC, and the frequency

dependence of DM. Analysis of dynamic spectra using PRS or CS can provide ‘at epoch’ estimates of the

scattering time or possibly the PBF shape, which can track refractive distortions of the PBF. We emphasize

that determination of the PBF shape and its effect on ToAs need to be based on the same data employed for

initial ToA estimates (e.g. using template matching with a fixed template). We also underscore that usage of an

exponential PBF is unsuitable in PTA contexts because it introduces biases in ToA corrections.
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Once scattering time estimates are available, ToA corrections for slow scattering variability can be based on a

look-up table for ToA offsets based on the actual intrinsic profile shape and relevant PBF. This is described in

more detail below. AOA variations are harder to track but might be quantified using drift rates in dynamic

spectra, dν/dt of scintles.

Scattering-corrected ToAs will lead to better (unbiased) estimates for DM. Whether the chromaticity of DM

can be corrected is unclear. The sustained form for DM(ν) over a refraction time may provide the basis for its

determination. Further exploration of this is rqeuired. On the other hand, the consequences of DM chromaticity

are very small for low-DM (e.g. ≲ 50 pc cm−3) pulsars observed at ≳ 0.8 GHz frequencies. Utlizing higher-DM

pulsars and lower frequencies may require special attention.

Discrete interstellar refraction and delay events, seen as ‘extreme scattering events’ are sustained over periods

of weeks to months. Delays from ESEs are generally expected, through modeling, to include a mixture of

dispersion delays, AOA delays, the combined effects from multiple images that may be produced. These are not

easily modelable and, as discussed earlier, will produce non-Gaussian timing residuals.

These considerations will be increasingly important as PTAs expand the number of included MSPs, which will

likely require adding higher-DM pulsars than those in current PTAs. As shown in § 18.6, scattering corrections for

higher-DM pulsars (or observations at lower frequencies than typically used in PTAs even for the current sample)

require resolution of scintillation frequency structure. This is more challenging for high-DM/low-frequency

combinations and in some cases requires incorporation of cyclic spectroscopy methods.

4. Model remaining errors and variances: Not all terms in the arrival time equation can be fully corrected

and some are simply uncorrectable. The remaining ToA errors require inclusion in the covariance matrix used

to optimize parameter estimation of a comprehensive timing model and for GW detection.

Three terms are well known to always require inclusion in the covariance matrix: (1) Template fitting errors from

radiometer noise, which are dependent on epoch, telescope, receiver, and the degree of refractive and diffractive

scintillations; (2) Uncorrectable jitter, whose variance is largely epoch-dependent and is broadband, decorrelating

only over frequency ranges larger than about an octave; and (3) Red noise, including spin and orbital noise, as

well as residual ISM noise that is only partially corrected.

Additional terms arise from uncorrected PBF variations on both rapid and slow time scales. Quantifying their

contributions to the covariance matrix requires consideration of the specific methodology used for template

matching. The same holds for intrinsic profile variations and whether TOAs are corrected or excised.

Attention is also required for the stationarity and gaussianity of residual errors and fluctuations. The simplest

form of nonstationarity is the variation in radiometer noise with epoch due to changes in receivers (and telescopes).

Also, RISS alters the effective flux density of a pulsar, causing modulations of the template-fitting variance.

Terms that are well approximated as Gaussian processes include ToA errors from radiometer noise, jitter, and

rapid PBF changes. Spin variations (c.f. discussion in § 4.5), yields mixtures of (likely) Gaussian variations and

discrete events. DM and multipath effects are also Gaussian processed intermixed with strong modulations of

observables due to caustic events.

22. CUSTOMIZED SCATTERING MITIGATION FOR INDIVIDUAL MSPS

We have demonstrated with simulations how ToA offsets depend on astrophysical aspects of scattering as well as

methodological details of template matching. The most general conclusion is that ToA offsets are smaller than than the

scattering time τ at a given frequency and also scale with frequency differently than the scattering time. Furthermore,

the ToA offset is function of both the intrinsic pulse shape as well as the PBF shape.

Scattering corrections of ToAs thus require a customized analysis for each pulsar. These would comprise simulations

that convolve the adopted template profile (assumed to be devoid of any scattering56) with a family of assumed PBFs.

These PBFs would be parameterized with the underlying density spectrum index β and inner scale li. Measured

scattering times τ provide an estimate for the diffraction scale ld(νref) at a reference frequency νref which yields the

56 Of course templates based on measured pulses will likely include some level of scattering but this is small for low-DM pulsars. In
practice, some templates are based on Gaussian component modeling of measured profiles, which excludes scattering to a large degree.
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parameter ζ(ν) = li/ld(ν) for power-law PBFs. Recall that an exponential PBF with an achromatic shape is generally

a poor choice for constructing templates for precision timing. Asymptotically, however, very strong scattering yields

a small ld and a large value fir ζ for which the PBF tends toward an exponential if scattering is confined to a small

fraction of the line of sight.

The steps of a multifrequency analysis would be:

1. Choose a template to use as a starting point. Ideally this would be a ‘de-scattered’ profile or one obtained at a

frequency where scattering has a minimal effect on the shape. Intrinsic profile chromaticity is also an issue that

can be addressed by multifrequency profile modeling that excludes scattering but includes frequency dependent

amplitudes, widths, and positions of Gaussian components (e.g. M. Kramer et al. 1994; A. Geiger et al. 2025).

2. Choose a PBF shape according to β and inner scale li.

3. Use a measurement of scattering time at a reference frequency νref to evaluate ζ(ν) = li/ld(ν) where ld(ν) is

related to τ(ν).

4. Generate frequency dependent PBFs using β, ζ(ν), and τ(ν).

5. Convolve the intrinsic shape U(t, ν) with each PBF p(t, ν, τ) using a grid of τ values.

6. Using a so-generated template (which may differ from that used in step 1), determine the ToA offset as a function

of τ and frequency.

7. Use the results as a lookup table for a ToA correction that is a function of ν, τ(ν) and implicitly depends on

the intrinsic profile shape and on ISM turbulence parameters (β and li). The correction is most robust for a

contemporaneous measurement of τ(ν) based on a large number of scintles (c.f. § 18.5.5).
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Part VIII. Appendices

APPENDIX

A. NOMENCLATURE

Table 11. Acronyms and Symbols

Item Definition Typical Units

Acronyms:
Astrophysical
AGN Active galactic nucleus

CP Canonical pulsar

DGR Differential galactic rotation —

DNS Double neutron star

ESE Extreme scattering event

GC Galactic center

IDV Intraday varaible (AGN)

IHV Intrahour variable (AGN)

MSP Millisecond pulsar —

MW Milky Way —

Methods and statistical analysis
ACF, ACV, CCF Autocorrelation, autocovariance, and crosscorrelation functions

AD, AV Allan deviation σy and Allan variance σ2
y —

CS Cyclic spectrum or spectroscopy —

FWHM Full width at half maximum

HWHM Half width at half maximum

PCA Principal component analysis

PRS Phase resolved spectrum or spectroscopy ===

SEFD ≡ Ssys System equivalent flux density = Tsys/G Jy

VLBI Very long baseline interferometry

Propagation
AOA Angle of arrival various

DISS Diffractive interstellar scintillation —

DS Dynamic spectrum

Measures:

DM Dispersion Measure pc cm−3

DM(ν) Chromatic DM, multipath averaged pc cm−3

EM Emission measure pc cm−6

SM Scattering measure kpcm−20/3

Table 11 continued on next page
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Table 11 (continued)

Item Definition Typical Units

RM Faraday rotation measure radm−2

PBF Pulse broadening function —

RISS Refractive interstellar scintillation

SS Secondary spectrum (power spectrum of dynamic spectrum)

TOA Time of arrival various

Units
au Astronomical unit

Jy Jansky (unit of flux density)

mas milliarc second

Symbols:
⟨X⟩ Ensemble average of a quantity X

⟨X⟩x Average of X over another quantity x (e.g. time, frequency, or phase)

α Exponent in phase structure function

β Exponent in wavenumber spectrum for ne (11/3 for Kolmogorov)

B Receiver bandwidth MHz, GHz

C2
n Coefficient in electron-density wavenumber spectrum m−20/3

C1 Constant in uncertainty relation, 2π∆νdτd = C1 —

c Speed of light cm s−1

∆(τ) Normalized ACF of noise

DDM Structure function for dispersion measures pc cm−32

Dne Structure function for electron density cm−6

DNe Structure function for electron column density cm−4

Dϕ Phase structure function radians2

∆νd Diffraction = scintillation = decorrelation bandwidth kHz or MHz

∆νsb Spectral broadening bandwidth Hz

δt Time Lag

δI Intensity fluctuation

δne Fluctuation in free electron density cm−3

δx Spatial offset in observation plane

∆ω Difference in galactic rotation rate

∆td Scintillation time scale various

dlo Distance from Lens (or layer or screen) to observer kpc

dsl Source-lens (or layer or screen) distance kpc

dso Source-observer distance kpc

ε Baseband electric field

ϵ fractional electron density variation = RMS(δne)/ne

ε Electric field

ε Baseband voltage

ζ Dimensionless inner scale or fractional density variance

η Mean-square scattering angle per unit distance mas kpc−1

FJ Jitter parameter —

F̃ Cloudlet model parameter (pc2 km)−1/3 (Kolmogorov)

fNyq Nyquist frequency

fs Pulsar spin frequency Hz

fyr Frequency of 1 yr−1 yr−1

Table 11 continued on next page
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Table 11 (continued)

Item Definition Typical Units

fα Numerical factor in structure function

fJ Dimensionless jitter factor for calculating TOA jitter

ΓI Intensity correlation function

ΓδI Intensity covariance function

Γε Spatial correlation function of wavefield

G Telescope gain KJy−1

I Intensity

It∞ Factor in the calculation of TOA error from frequency-dependent DMs —

IDM Factor in calculation of frequency-dependent DMs —

KDM = cre/2π × pc/GHz2 Constant in the expression for dispersion time delay t = KDMν−2DM s

λ, ν Electromagnetic wavelength and frequency cm, Hz

ld, ldθ
, ldI

Spatial scale in diffraction pattern (alternative definitions) various

ℓ, b Galactic coordinates deg

li, lo Inner and outer scales of electron-density variations (≡ 2π/qi, 2π/qo) various

mDISS Scintillation modulation index (= rms / mean) —

mM Modulation index of M —

ν Radio frequency GHz

Ndof Number of degrees of freedom in scintillations —

Ns Number of independent scintillation features averaged —

npol Number of polarization channels —

ne Free electron density cm−3

Pδne (q) Wavenumber spectrum for the electron density (length)−3

P Pulse period s

Ṗ Period derivative = dP/dt s s−1

q Wavenumber (3D vector) (length)−1

qo, qi Lower and upper wavenumber cutoffs of Pδne various

QS/N, QJ, QDISS, Qτ , Quality measures for TOA effects µs−1

Qspin,, QDM(t), QDM(ν),

QPBF, QΣ, QΣLS

re Classical electron radius cm

R Ratio of a pair of frequencies (≥ 1) —

σtS/N
RMS TOA error from radiometer noise (S/N dependent) ns or µs

σtJ RMS TOA error from pulse jitter ns or µs

σtDISS
≡ ∆tDISS ≡ ∆tδp RMS TOA error from diffractive scintillations (finite scintle effect) ns or µs

σtspin
RMS residual from spin or torque noise of a neutron star ns or µs

σtDM(t)
RMS residual due to asynchronous multifrequency observations ns or µs

σtDM(ν)
RMS residual due to chromaticity of DM from multipath propagation ns or µs

σθ RMS angle of arrival

Ssys SEFD = Tsys/G Jy

Spsr Pulsar period averaged flux density mJy, Jy

S/N Signal-to-noise ratio —

sinc(x) sinc function = (sinπx)/πx —

s Location along line of sight, s = 0 at source

τ lag time in correlation function or characteristic pulse scattering time various

τd Characteristic pulse scattering time various

τ̂d Estimate for the pulse broadening time from a model

Table 11 continued on next page
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Table 11 (continued)

Item Definition Typical Units

t Time various

ts Slow time (e.g. ≫ s) various

t, TOA Time of arrival various

t∞ TOA with chromatic delays removed (‘infinite frequency’) ns or µs

te Emission time at source various

tC Non-dispersive chromatic delays µs

τ or τ Scattering time constant (1/e) various

tsep Separation time between multi-frequency observations

Tint Integration time or data span at a single epoch various

Tdata Total time span data set for an individual pulsar yrs

Tsys System (radiometer) temperature K

U Template shape normalized to unit peak amplitude

ϕ Phase perturbation from refractive index perturbations rad

veff Vector effective velocity km s−1

vobs Observer’s velocity

v′ Pulsar velocity

W or WU Pulse width (FWHM) various

xτ Exponent in scaling law for pulse broadening time τ(ν) ∝ ν−xτ

B. SPECTRAL REPRESENTATIONS

Spectra are defined as one-sided (positive frequencies only) so that the variance σ2
X of a quantity X is related to its

spectrum SX(f) by

σ2
X =

∫ ∞

0

df SX(f). (B1)

A variety of spectral representations are used in the pulsar, PTA, and GW literature, which are summarized here,

though not all are utilized in the paper:

Power spectrum of TOA perturbations ∆t(t): S∆t(f)
Power spectrum of timing residuals R(t): SR(f)
Power spectrum of dimensionless strain h(t): Sh(f)
Amplitude spectrum for dimensionless strain: hc(f)
Energy spectrum of GWs: SE(f)
Energy density of GWs per unit log frequency: ρgw(f)
Power spectrum as fraction of closure density: Ωgw(f) = ρgw(f)/ρc

These are related according to the following relations (e.g. C. J. Moore et al. 2015):

h2c(f) = fSh(f) =

(
3H2

0

2π2

)
ΩGW(f)

f2
=

4G

πc2
SE(f)

f
= 12π2f3S∆t(f).

The coefficient 12π2 = 3(2π)2 in the last equality involving S∆t(f) includes (2π)2 from the Fourier derivative theorem

and a factor of 3 from all-sky averaging of the TOA perturbation.

The residuals spectrum SR(f) is the power spectrum of the timing residual R(t), the difference between the timing

perturbation ∆t(t) and a model fit ∆̂t(t),

R(t) = ∆t(t) − ∆̂t(t). (B2)
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Empirical spectral models often use a power law form with an implicit frequency range,

S(f) = S0

(
f

fref

)−X

, (B3)

where fref is a reference frequency (often specified as 1 cy yr−1 in PTA contexts). Motivated by representations for the

GW amplitude spectrum,

hc(f) = A

(
f

fref

)α
(B4)

using a dimensonless amplitude, A, the spectrum for ToA perturbations from GWs (before any model fitting that

removes fluctuation power), is

S∆t(f) =
A2

gw

12π2

(
f

fref

)−Xgw

, Xgw = 3 + 2α. (B5)

For example, the simplest model for the nanohertz stochastic background gives α = −2/3 and Xgw = 13/3 (E. S.

Phinney 2001; A. H. Jaffe & D. C. Backer 2003).

Generalizing the relation between Eq. B3 and Eq. B5, we have

A = 2π
√

3
[
f3ref(f/fref)

XS(f)
]1/2

. (B6)

Application to several classes of stochastic noise includes the following:

1. Power-law noise: The dimensionless amplitude, APL = 2π
√

3
[
f3refS0

]1/2
is independent of fluctuation frequency,

2. White noise: With spectral index X = 0, noise with time-domain RMS σw in a bandwidth Bw has amplitudes

S0 = σ2
w/Bw and Aw = 2π

√
3(fref/Bw)1/2frefσw. A time series of sampled data with uniform spacing δt has

a bandwidth Bw equal to the Nyquist frequency, fNy = 1/2δt. For instance, white noise ToA errors with

σw = 0.1µs in data obtained roughly monthly with δt = 0.1 yr has Nyquist frequency fNy = 5 cy yr−1 and

amplitudes yields a spectral amplitude

S0 = 2 × 10−3 µs2 yr

(
δt

0.1 yr

)(
σw

0.1µs

)2

, (B7)

and a dimensionless strain spectrum with α = 3/2 and

Aw = 1.54 × 10−14

(
δt

0.1 yr

)1/2(
σw

0.1µs

)
. (B8)

3. Low-pass spectra: A spectral form S(f) = S0L(f) with low-pass shape normalized to L(0) = 1 has bandwidth

BL ∼ 1/WL and WL is the correlation time for the process. If the variance is σ2
L, then S0 = σ2

L/BL = σ2
LWL.

This relation is largely unaffected by the removal of a second-order polynomial, as is done in pulsar timing

analysis to fit for a pulsar’s spin rate and its derivative, if the length of the time series T ≫ WL, which we

assume.

While a power-law form is not a good model for a low-pass spectrum, PTA studies characterize the GW back-

ground with a power law that is then compared with contributions from other processes, whether or not they

have power-law spectra. Non power-law spectra have equivalent A values that are frequency dependent, as seen

by inspection of Eq. B6. Estimated values for the corresponding X values are also frequency and data dependent

in other ways. For a low-pass spectrum the dimensionless amplitude is

AL(f) = 2π
√

3
[
f3ref(f/fref)

XSL(f)
]1/2

. (B9)
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Evaluating at f = fref and assuming BL > fref (or WL < 1 yr) we have SL(fref) = S0 and AL(fref) =

2π
√

3
(
f3refσ

2
LWL

)1/2
. For σL = 0.1µs, WL in yr, and fref = 1 cy yr−1 the spectral amplitudes are

S0 = 10−2 µs2 yr

(
WL

1 yr

)(
σL

0.1µs

)2

, (B10)

AL(fref) = 2π
√

3
(
f3refσ

2
LWL

)1/2
= 3.45 × 10−14

(
WL

1 yr

)1/2(
σL

0.1µs

)2

, (B11)

Processes with low-pass spectra will yield data-dependent values for A and X for a power-law model. Using

simulations, we find that frequency indicesX for low-pass processes are smaller than those for the GW background

and pulsar spin noise, i.e. XL ≲ 3. Simulated time series comprising low-pass noise with RMS σL added to

white noise with RMS σw were analyzed by first subtracting a second-order polynomial to mimic the removal of

a spin-down polynomial from arrival time data. The resulting spectra S(f) were fitted with a model of the form

a+X log(S) + c for f ≤ fc where fc is a cutoff frequency and a constant amplitude c for f > fc. Least squares

fitting for all four parameters yields frequency indices X that depend on the bandwidth of the low-pass noise

and the ‘signal’-to-noise ratio, S/N = σL/σw. Indices averaged over 1000 realizations and over S/N from 0.5 to

5 were ⟨X⟩ ≃ −1.8 ± 0.8. For different S/N values, ⟨X⟩ and σX were −1.2 and 0.9 for S/N = 0.5 and −2.3 and

0.6 for S/N = 5.

C. MODULATED COMPLEX NOISE

Time-domain processes comprising modulations of a complex noise process appear in two contexts: the emitted pulsar

signal and the impulse response from multipath propagation through the interstellar medium. The statistical properties

of each of these processes are similar, so we present here a generic description that applies to both cases.

Define z(t) = x(t)m(t) as the product of a real pulse-like amplitude x(t) and complex, Gaussian noise m(t) with

bandwidth B. The noise has stationary statistics with zero mean ⟨m⟩ = 0, variance ⟨|m|2⟩ = σ2
m and autocorrelation

function

⟨m(t)m∗(t ′)⟩ = σ2
m∆(t− t ′). (C1)

The quantity ∆(t) has a width equal to the reciprocal of the signal bandwidth ∼ B−1 and is assumed to be much

narrower than x(t). The noise m is therefore flat (i.e. ‘white’) over the bandwidth. The ‘intensity’ is the squared

magnitude Z(t) = |z|2 = x2(t)|m(t)|2. In the following we consider x(t) to be deterministic (not stochastic).

Properties of the squared modulated noise M = |m|2 are

1. Modulation index, mM : 1 + m2
M ≡ ⟨M2⟩/⟨M⟩2 = 2. This value is a property of complex Gaussian noise. If m

were real, the value would be three.

2. Spectrum: the spectrum of z(t), Sz(ν) ≡ |z̃(ν)|2, has mean ⟨Sz(ν)⟩ = σ2
m∆̃(ν)Rx(0) where Rx(0) =

∫
dt x2(t).

The mean square of the spectrum is ⟨S2
z (ν)⟩ = 2⟨Sz(ν)⟩.

3. Spectral autocorrelation function:

RSz (δν) = σ4
n

{
R2
x(0)∆̃(ν)∆̃(ν + δν) + [∆̃(ν + δν)]2SX(δν)

}
, (C2)

where X ≡ x2 and

SX(ν) =
∣∣∣X̃(ν)

∣∣∣2 =

∣∣∣∣∫ dtX(t)e2πiνt
∣∣∣∣2 . (C3)

The two equal-amplitude terms of the frequency correlation function in Eq. C2 comprise a broad component determined

by the receiver bandpass function ∆̃ and a narrow spike associated with the modulation x.
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Product of two complex Gaussian noise processes: Let z = xy be the product of two complex noise processes x and

y like that described in Appendix C. Defining X = |x|2, Y = |y|2, and Z = |z|2, the squared modulation indices

m2
X ≡ ⟨X2⟩/⟨X⟩2 − 1 etc. are related as

1 +m2
Z = (1 +m2

X)(1 +m2
Y ). (C4)

If x and y have (complex) Gaussian statistics, then mX = mY = 1 and mZ =
√

3.

If x and y are Fourier transforms of time-domain processes, they will generally have complex Gaussian statistics by

the central limit theorem. The resulting spectrum Z will manifest two characteristic frequency scales determined by

those of X and Y individually.

D. ToA VARIATIONS FROM FREQUENCY-DEPENDENT DISPERSION DEASURES

The chromaticity of dispersion measures DM(ν) caused by multipath propagation was initially identified by J. M.

Cordes et al. (1990); R. Ramachandran et al. (2006) and also by J. Y. Donner et al. (2019); D. Kaur et al. (2022);

P. Kumar et al. (2025) subsequent to the theory developed by J. M. Cordes et al. (2016, hereafter CSS16). CSS16

presented the consequences for pulsar timing for both dual-frequency estimates of DM and wideband measurements

using analytical and simulation methods, respectively.

Here we present a more general analytical treatment for arbitrary frequency coverage that extends the analytical

approach in CSS16 for two spot frequencies. A multifrequency data set D = {tν , νl ≤ ν ≤ νh} comprising Nν ≫ 1

frequency channels is analyzed here in the continuum approximation. The total frequency ratio R ≡ νh/νl can be

much larger than unity for recently developed wideband receivers.

To calculate the effects of DM(ν) in isolation of other chromatic propagation effects, we adopt a minimal model for

ToAs that includes the infinite frequency (‘true’) ToA , a dispersion term, and measurement error,

tν = t∞ +KDM ν−2DM(ν) + ϵν , (D1)

where the overbar denotes that DM is averaged over scattered propagation paths, KDM = cre/2π, and additive noise

from measurement errors is statistically independent between frequencies and has variance σ2
ν .

We estimate t∞ and DM as parameters of a fitting function,

tν = t̂∞ +KDM ν−2D̂M, (D2)

using a cost function C =
∫
dν wν(tν − t̂ν)2 with weights57 wν ∝ σ−2

ν . Unless stated otherwise, integrals are over the

entire frequency interval [νl, νh]. The resulting least squares solutions are

t̂∞ = t∞ +
KDM

∆
(j4l2 − j2l4)

D̂M = ∆−1(j0l4 − j2l2), (D3)

where we have defined

jn=

∫
dν wν ν

−n, (D4)

ln=

∫
dν wν ν

−nDM(ν), (D5)

∆ = j0j4 − j22 . (D6)

To assess the extra variance that results from DM chromaticity we reference DM(ν) to the highest frequency, νh,

DM(ν) = DM(νh) +
[
DM(ν) − DM(νh)

]
≡ DM(νh) + ∆DM(ν, νh). (D7)

57 For simplicity we assume a diagonal covariance matrix for the errors ϵν . It is trivial, but less useful analytically, to extend the analysis
to an arbitrary covariance matrix.
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Parameter estimates are then

t̂∞ = t∞ +
KDM

∆

∫
dν wν ν

−2
[
j4 − j2ν

−2
]

∆DM(ν, νh), (D8)

D̂M = DM(νh) + ∆−1

∫
dν wν ν

−2
[
j0ν

−2 − j2
]

∆DM(ν, νh). (D9)

D.1. Errors in ToA and DM Estimates

To express results in terms of frequency ratios, we make a change of variable to r = νh/ν to obtain errors in t∞ and

D̂M due solely to the frequency dependence of DM,

δt̂∞ =
KDM

νh∆

∫ R

1

drWr

[
j4 − j2(r/νh)2

]
∆DM(νh/r, νh) (D10)

δD̂M = (νh∆)−1

∫ R

1

drWr

[
j0(r/νh)2 − j2

]
∆DM(νh/r, νh). (D11)

We apply these results to two cases, one with constant weights wν = 1 over the frequency range [νl, νh] with ratio

R = νh/νl and another where νl and νh are two spot frequencies. The weights for the two-frequency case are

wν = (1/2)[δ(ν − νl) + δ(ν − νh)], (D12)

which, for dimensionless frequencies, corresponds to

wr = (r/2)[ν−1
h δ(r − 1) + ν−1

l δ(r −R)] =
r

2νh
[Rδ(r −R) + δ(r − 1)]. (D13)

The errors in t̂∞ from the frequency dependence of DM for the two cases are

δt̂∞ =
KDM

ν2h
×


R(R3 − 1)

(R− 1)4

∫ R

1

dr

[
1 − 3(R− 1)r2

(R3 − 1)

]
∆DM(νh/r, νh), wν = constant

−
(

R2

R2 − 1

)
∆DM(νl, νh), two frequencies.

(D14)

The corresponding errors in the estimated DM are

δD̂M =


3R

(R− 1)3

∫ R

1

dr

(
r2

R
− 1

)
∆DM(νh/r, νh), wν = constant

(
R2

R2 − 1

)
∆DM(νl, νh), two frequencies.

(D15)

D.2. Variances

The variances of δt̂∞ and δD̂M are given by the ensemble averages of (δt̂∞)2 and (δD̂M)2. These involve the cross

correlation function

Γ∆DM(ν1, ν2, ν3;β) ≡ ⟨∆DM(ν1, ν3)∆DM(ν2, ν3)⟩ , (D16)

which is evaluated in §D.3 along with the quantity Φβ(r1, r2),

Γ∆DM(ν1, ν2, ν3;β) = Φ2
β(r1, r2)JDM(νh, β) (D17)
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where JDM, evaluated later in this section, integrates the scattering medium over the bundle of ray paths,

JDM(νh, β) =
(2π)2Γ(2 − β/2)

β − 2

∫
dzC2

n(z)σβ−2
X z, νh). (D18)

The variances of the estimates for arrival time and DM are then

Var(δt̂∞) =

(
KDM

ν2h

)2

JDM(νh, β) It∞(R, β) (D19)

Var(δD̂M) =JDM(νh, β) IDM(R, β). (D20)

The dimensionless integrals It∞ and IDM over dimensionless frequency ratios r1,2 = νh/ν1,2 for the wideband case with

wν = constant are given by

It∞(R, β) =

[
R(R3 − 1)

(R− 1)4

]2 ∫ R

1

∫ R

1

dr1dr2

[
1 − 3(R− 1)r21

(R3 − 1)

] [
1 − 3(R− 1)r22

(R3 − 1)

]
Φ2
β(r1, r2), (D21)

and

IDM(R, β) =

[
3R

(R− 1)3

]2 ∫ R

1

∫ R

1

dr1dr2
(
r21/R− 1

) (
r22/R− 1

)
Φ2
β(r1, r2), (D22)

For two equally weighted spot frequencies, these are

It∞(R, β) = IDM(R, β) =

[(
R2

R2 − 1

)
Fβ(R)

]2
, (D23)

which is obtained by using the identify Φ(x, x) = Fβ(x), where Fβ , first defined in CSS16, is given in Eq. D40. These

integrals are shown in Figure 51 for three values of β and for both the wideband and two-frequency cases.

These integrals are shown in Figures 51 for three values of β and for both the wideband and two-frequency cases.
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Figure 79. Left: Plot of the RMS excess DM variation due to chromatic multipath propagation for different values of the total
DM that are used to calculate the total DM. Right: Plot of the RMS variation in t∞ due to chromatic multipath propagation
for different values of the total DM that are used to calculate the total DM.

D.3. Derivation of the cross correlation Γ∆DM(ν1, ν2, ν3)

The cross correlation is expanded into the sum of four autocorrelation functions,

Γ∆DM(ν1, ν2, ν3) = CδDM(ν1, ν2) + CδDM(ν3, ν3) − CδDM(ν2, ν3) − CδDM(ν1, ν3), (D24)
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where the cross correlation of δDM = DM − ⟨DM⟩ between frequency pairs is

CδDM(ν1, ν2) =
〈
δDM(ν1,x)δDM(ν2,x)

〉
=

∫∫
dx ′dx′′

∫∫
dz ′dz ′′Aνh(x ′, z ′)Aνl(x

′′, z ′′)Aν1(x ′)Aν2(x′′)⟨δne(x ′, z ′)δne(x
′′, z ′′)⟩. (D25)

The z integrals are from 0 to d and the x integrals are over an infinite plane58. To proceed, a change of variables is

made from x ′,x′′ to x = (x ′ + x′′)/2 and δx = x ′ − x′′ and from z ′, z ′′ to z = (z ′ + z ′′)/2 and δz = z ′ − z ′′. The

resulting integral over x yields the cross-correlation function for the averaging function,

CA(δx, δz, z, ν1, ν2) =

∫
dxAν1(x+ δx/2, z + δz)Aν2(x− δx/2, z − δz), (D26)

which we assume changes slowly in z compared to density variations, and thus set δz = 0 in the argument and rewrite

simply as CA(δx, z, ν1, ν2).

The density correlation function is written in terms of the wavenumber spectrum,

⟨δne(x + δx, z + δz)δne(x− δx, z − δz)⟩ =

∫
dq eiq⊥·δx+qzδzPδne

(q, z). (D27)

The integration over δz gives 2πδ(qz) and the integration over dq⊥ yields the Fourier transform59 of CA(δx, z, ν1, ν2),

We adopt a Gaussian smoothing function with RMS spatial scale σX for the bundle of rays comprising the scattering

cone,

Aν(x, z) =
[
2πσ2

X(ν, z)
]−1

e−x
2/2σ2

X(ν,z), (D28)

that yields a Fourier transform for the cross-correlation function also Gaussian in form,

C̃A(q⊥, ν1, ν2, z) = (2π)−2e(q⊥
2/2)[σ2

X(ν1,z)+σ
2
X(ν2,z]. (D29)

The two-frequency cross correlation becomes

CδDM(ν1, ν2) = 2π

∫
dz

∫
dq⊥ Pδne

(q⊥, 0, z)e−(q⊥
2/2)[σ2

X(ν1,z)+σ
2
X(ν2,z)]. (D30)

Using the power-law form for Pδne
(q) for 2 < β < 4 with an exponential rolloff from the inner scale and using

dq⊥ = 2πq⊥dq⊥, we require an integral of the form∫ ∞

y0

dy y1−βe−ay
2

=

∫ ∞

0

dy y1−βe−ay
2 −

∫ y0

0

dy y1−βe−ay
2

. (D31)

We make use of the integral (GR 3.478.1),∫ ∞

0

dy xv−1e−ux
p

= p−1u−v/pΓ(v/p), (D32)

which holds for u, v, p > 0. Thus to apply it for 2 < β < 4 we integrate by parts to obtain

I =

∫ ∞

qo

dq⊥ q⊥
1−βe−(q⊥/qi)

2

=
1

(β − 2)

[
q2−βo e−aq

2
o +

2aq4−βo

4 − β
− a(β−2)/2Γ(2 − β/2)

]
, (D33)

with a = [σ2
X(ν1, z) + σ2

X(ν2, z)]/2 + 1/q2i . This is further simplified by taking into account that the outer scale is

much larger than the width of the scattering cone ∼ σX at relevant radio frequencies which, in turn, is much larger

than the inner scale. This impies aq2o ≪ 1 ≪ (qo/qi)
2 and

I ≈ 1

(β − 2)

[
q2−βo +

2aq4−βo

4 − β
− a(β−2)/2Γ(2 − β/2))

]
. (D34)

58 Extension over an infinite plane will not apply to bounded media, as discussed by J. M. Cordes & T. J. W. Lazio (2001a). A bounded
medium will alter the frequency dependence of any multipath propagation.

59 Note that the convention used for Fourier transforms is g̃(q) = (2π)−1
∫
dx e−iqxg(x). Thus a factor (2π)−1 is introduced for each

dimension of a Fourier transform.
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We then have

CδDM(νl, νh) ≈ (2π)2

β − 2

∫
dzC2

n(z)

[
q2−βo +

2aq4−βo

4 − β
− a(β−2)/2Γ(2 − β/2)

]
. (D35)

The first term in square brackets is independent of frequency so its contribution vanishes when substituted into

Eq. D24. The second term is linear in the σ2
X terms at the two frequencies and also cancels. Using the third term and

substituting for the relevant values of a we obtain

Γ∆DM(ν1, ν2, ν3) =
(2π)2Γ(2 − β/2)

β − 2
Φ2
β(r1, r2)

∫
dzC2

n(z)σβ−2
X (z, ν3) (D36)

where the frequency ratios r1 = ν3/ν1 and r2 = ν3/ν2 are used in the dimensionless function,

Φ2
β(r1, r2) = 2−(β−2)/2[Vβ(r1) + Vβ(r2) − rβ2Vβ(r1/r2)] − 1 (D37)

with

Vβ(x)≡ [1 + x2β/(β−2)](β−2)/2. (D38)

We note that for equal values of the arguments,

Φβ(r, r) = Fβ(r), (D39)

where Fβ(r) is the function defined in CSS16 for the case where a pair of frequencies is used to calculate D̂M and t̂∞
rather than the wideband continuum range of frequencies considered here,

Fβ(r) =

{
2(4−β)/2

[
1 + r2β/(β−2)

](β−2)/2

− rβ − 1

}1/2

. (D40)

This quantity is shown in Figure 80 for three values of β.
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Figure 80. Plot of Fβ(R) vs. frequency ratio R = νh/νl for several values of β. This function is applicable to the two-frequency
case as presented in CSS16.
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E. SIMULATION OF PROPAGATION THROUGH THIN PLASMA SCREENS

E.1. Diffraction and lensing from a thin screen

To create Figure 59, we evaluated the wavefield at an observer location (x, d) using a two dimensional Fresnel-Kirchhoff

diffraction integral for a thin screen that imposes a phase ϕs(x) on an incident plane wave,

E(x) =

∫
dx ′K(x− x ′)eiϕs(x

′), (E1)

where K(x) = (2πirF
2)−1ei|x−x ′|2/2rF2

is the propagation kernel and the Fresnel scale is rF =
√
λd/2π. The screen

phase includes a Gaussian lens ϕg(x) ∝ exp
(
−|x|2/a2

)
combined with a stochastic phase ϕK(x). The latter is drawn

from a Kolmogorov medium with spectrum of the form of Eq. 9.1 with an inner scale li = 2π/qi imposed as an

exponential factor exp
[
−(q/qi)

2
]

and outer scale determined by the size of the spatial grid used to evaluate E(x).

A realization of ϕK is calculated by using the average phase spectrum Sϕ(q⊥) = 2π(λre)
2SM exp

[
−(q/qi)

2
]
q⊥

−β to

shape complex white noise N (q⊥),

ϕK(q⊥) ∼ S
1/2
ϕ (q⊥)N (q⊥). (E2)

The convolution in Eq. E1 is executed by taking the inverse FT of the product of FTs of the kernel and the screen

phase factor.

E.2. Refractive distortions of scattered Images and PBFs

We outline simulations described in the main text that demonstrate the effects of stochastic refraction screens on

observable quantities. For simplicity, we employ a circularly symmetric scattered image shape in the absence of

refraction. Non-Gaussian images like those from a Kolmogorov medium and images caused by asymmetric scattering

could be used instead, though the essential features of the examples shown here would not be altered significantly. We

thus use an unrefracted scattered image seen by an observer with RMS angles σx = σy = σ. The corresponding RMS

diffraction angle is σd = (dso/dsl)σ. For a source much further from the observer than the screen, dso/dsl → 1 and

σd → σ.

We calculate the scattering parameters of a thin screen by specifying the DM for the LoS and inferring the scattering

strength from the τ(DM) relation for Galactic pulsars (the ‘hockey stick’ relation in Eq. 10.16). After scaling from

1 GHz to the frequency of interest, the diffraction and refraction scales ld and lr are calculated along with the value

of the phase structure function across a Fresnel scale. Using the electromagnetic wavenumber k = 2π/λ and Fresnel

scale rF =
√
d ′/k =

√
λd ′/2π,

ld =
1

kσd
=

1

k

(
d ′

cτ

)1/2

=
1

2πν

(
cd ′

τ

)1/2

=
rF

(2πντ)1/2
≡ rF

u
(E3)

lr =dloσ = d ′σd =
rF

2

ld
≡ urF, (E4)

where another quantity u is also used to relate the Fresnel scale to the diffraction and refraction scales. For a Gaussian

image, the scattering time and scintillation bandwidth ∆νd are related as

2πτ∆νd = 1, (E5)

implying that

u =
√

2πτ =

(
ν

∆νd

)1/2

. (E6)

By definition, Dϕ(ld) = 1 rad2 and we use a scaling of the phase structure function with baseline b for a medium with

an isotropic power-law wavenumber spectrum with index β and assume that b is intermediate between the inner and
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outer scales (the intertial subrange),

Dϕ(b) = (b/ld)β−2 ≡ ϕ2F(b/rF)β−2, li ≪ b≪ lo, (E7)

where the second equality defines the RMS phase between a pair of points in the screen separated by one Fresnel scale,

ϕF = (rF/ld)(β−2)/2 = u(β−2)/2. (E8)

Since we specify the unrefracted scattered image using the parameters given above, we do not need to simulate the

fine spatial scales in the screen that would cause scattering. Instead, we simulate only those scales l ≳ lr that cause

refraction by drawing realizations that conform to the wavenumber spectrum with wavenumbers q ≲ 2π/lr.

A refraction screen is generated by shaping complex Gaussian noise in the frequency domain with a shape function

related to the target wavenumber spectrum as [Pδne(q)]1/2 with the required wavenumber cutoffs (c.f. Eq. 9.1). To

exclude any scales that would diffract rather then refract, the upper wavenumber cutoff is set to qmax = 2π/lr. The

largest scale corresponds to half the screen size. The shaped complex noise is inverse Fourier transformed to give ϕr(x)

which is then normalized to give a phase structure function equal to ϕ2F across a length of one Fresnel scale. Enhanced

refraction can be implemented by increasing ϕF from the value needed to account for the diffraction. This approach

can be generalized to anisotropic scattering by using a different wavenumber spectrum.

F. INVENTORY OF TIMING EFFECTS FROM DISPERSION, SCATTERING, AND REFRACTION

This section itemizes and aggregates contributions to arrival time estimates when a model template is applied to a

measured profile. The error from additive noise is excluded here except in our final expressions. We assume that

the profile and template both include an intrinsic pulse shape convolved with a pulse broadening function. The time

argument t extends across one pulse period (one cycle of phase), ν is the center frequency of a channelized signal with

narrow bandwidth ∆νch, and t is the epoch of observation. The epoch corresponds to the mean time of an observation

block of duration T used to construct an average profile and estimate a ToA. Multiple profiles obtained in the same

observing session (e.g. subaverages obtained over ∼ 1 hr) have different epochs in this framework. However, profiles

from different frequency channels spanning a total bandwidth B obtained during the same time block are considered

to have identical epochs60. In the following, it is assumed that sufficient averaging has been done over time and

frequency (i.e. time-frequency product ≫ 1) that we can ignore self-noise (as defined in §§5.4, 7.1) and ignore cross

terms between radiometer noise and the pulsar signal.

The intrinsic (emitted) pulse Ui, pulse broadening function p, and scattered pulse Us are defined according to:

Actual pulse:
Quantity Terms Arguments Description
Ui = ⟨Ui⟩ + δUi (t, ν, t) Intrinsic pulse
p = ⟨p⟩ + δp (t, ν, t) Pulse broadening function
Us : = Ui ∗ p = ⟨Us⟩ + δUs (t, ν, t) Scattered pulse

⟨Us⟩ = ⟨Ui⟩ ∗ ⟨p⟩ (t, ν, t) Ensemble average scattered pulse
δUs = δUi ∗ ⟨p⟩ + ⟨Ui⟩ ∗ δp+ δUi ∗ δp (t, ν, t) Deviation from ensemble average scattered pulse

⟨Us⟩t = ⟨Us⟩ + ⟨δUs⟩t (t, ν) Scattered pulse averaged over epochs,

.

where we use the notation here, as elsewhere, ⟨· · · ⟩x to denote an average of a quantity over x.

60 Typically the difference in arrival times due to dispersion delays across a wide band B are much smaller than the integration time T .
The main utility of the epoch variable here is to provide a time argument for slowly changing processes from the ISM and, less prevalent,
intrinsic changes in profile shape.
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The model pulse includes analogous elements,

Model pulse:
Quantity Terms Arguments Description
Um : = ⟨Ui⟩ + δUm, (t, ν) Model intrinsic pulse

δUm = Um − ⟨Ui⟩ Model - actual
pm : = ⟨p⟩ + δpm (t, ν) model Pulse broadening function

δpm = pm − ⟨p⟩ Model - actual
Ums : = Um ∗ pm = ⟨Us⟩ + δUms (t, ν) Model scattered pulse

δUms = Ums − ⟨Us⟩ (t, ν) Model - actual average scattered pulse
= δUm ∗ ⟨p⟩ + ⟨Ui⟩ ∗ δpm + δUm ∗ δpm Deviation of model scattered pulse from

ensemble average scattered pulse

The scattered pulse Us is fitted with the model by cross correlating it with the model scattered pulse, Ums, and finding

the time lag of maximum correlation. This is equivalent to least-squares fitting in the Fourier domain, as described in

the main text. The cross correlation function (CCF) includes four terms (where we use the same asterisk notation for

both cross-correlation and convolution; context should help avoid any confusion between the two operations),

Template fit: Ums = template Us = profile CCF = ⟨Ums(t+ τ)Us(t− t0)⟩t → Ums ∗ Us

Ums ∗ Us = ⟨Us⟩ ∗ ⟨Us⟩ + ⟨Us⟩ ∗ δUs + δUms ∗ ⟨Us⟩ + δUms ∗ δUs

The scattered profile includes terms that are stochastic due to pulse jitter and from PBF variations (rapid variations

from the finite scintle effect and slow variations due to refraction). The template includes a term from mismatch

between its shape and that of the measured profile, which leads to a systematic ToA error.

The properties of fluctuating terms are:

Quantity Cause Change rate Correlation scales
δUi Jitter F = Fast High correlation across ν
δp : Finite scintle number F DISS

Refraction S = Slow RISS
δUs Jitter + finite scintles + refraction F + S Jitter + DISS + RISS
δUm Um − ⟨Ui⟩ : shape mismatch None (S) Systematic error
δpm pm − ⟨p⟩ : shape mismatch None (S) Systematic error
δUms Combined δUm, δpm : shape mismatches None (S) Systematic error

Terms in the CCF, fluctuation properties, ToA contribution

The CCF of template and profile is an average over time t,

Ĉ(τ) = ⟨Ums(t+ τ) ∗ Us(t− t0)⟩t = (⟨Us⟩ + δUms)) ∗ (⟨Us⟩ + δUs) , (F1)

where we drop the arguments in the rightmost equality. Note that δUms and δUs each comprise three terms. The CCF

expands into 16 terms that yield a total of 21 terms in the ToA, one equal to the true ToA (in the absence of additive

noise) from the cross correlation of ⟨Us⟩ in the template model with ⟨Us⟩ in the profile, and the remaining 20 from

pulse stochasticity (jitter and scattering) and shape mismatches between the template and profile. These 21 terms are
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itemized as,

Term Cause Term in ToA Comment
⟨Us⟩ ∗ ⟨Us⟩ ACF of ⟨Us⟩ with argument τ − t0 t0(ν, t) True ToA
δUms ∗ ⟨Us⟩ Mismatch of intrinsic profile (δUm) tδUm

Systematic error
Mismatch of PBFs (δpm) tδpm Systematic error
Combined mismatches (δUm, δpm) tδUmδpm Systematic error

⟨Us⟩ ∗ δUs Jitter ∆tJ F
DISS finite scintles ∆tδp ≡ ∆tδp,FSE F
Refraction ∆tδp ≡ ∆tδp,Refraction S

δUms ∗ δUs = Combined model and actual terms
(δUm ∗ ⟨p⟩) ∗ (δUi ∗ ⟨p)⟩ U mismatch + jitter ∆tδUmδUi

F
(δUm ∗ ⟨p⟩) ∗ (⟨Ui⟩ ∗ δp) U mismatch, δp, δp ∆tδUmδp F

∆tδUmδp S
(δUm ∗ ⟨p⟩) ∗ (δUi ∗ δp) U mismatch, jitter, δp, δp ∆tδUmδUiδp, F

∆tδUmδUiδp F
(⟨Ui⟩ ∗ δpm) ∗ (δUi ∗ ⟨p)⟩ p mismatch, jitter ∆tδpmδUi F
(⟨Ui⟩ ∗ δpm) ∗ (⟨Ui⟩ ∗ δp) p mismatch, δp, δp ∆tδpmδp F

∆tδpmδp S
(⟨Ui⟩ ∗ δpm) ∗ (δUi ∗ δp) p mismatch + jitter, δp, δp ∆tδpmδUiδp F
(δUm ∗ δpm ∗ (δUi ∗ ⟨p)⟩ U, p mismatches, jitter ∆tδUmδUi

F
(δUm ∗ δpm ∗ (⟨Ui⟩ ∗ δp) U, p mismatches, δp, δp ∆tδUmδpmδp F

∆tδUmδpmδp S
(δUm ∗ δpm ∗ (δUi ∗ δp) U, p mismatches, jitter, δp, δp ∆tδUmδpmδUiδp F

∆tδUmδpmδUiδp F

Comments:

We have separated those effects that simply delay the emitted pulse from those that introduce ToA variations by

distortion of the pulse. Dispersion delays are included in the former along with several achromatic contributions while

scattering and multiple imaging from lensing are included in the latter.

In the first column δp refers to all temporal changes in the PBF (fast and slow) while in the middle two columns δp

refers to rapid changes from the finite scintle effect and δp corresponds to slow changes in the envelope shape caused

by refraction.

Systematic ToA terms are denoted as tX while random errors are denoted as ∆tX .

Comments in the last column include designation of a term as varying with epoch fast (F) or slow (S).

The 21 terms in the third column are described as follows:

I. The true ToA t0(ν, t) comprises:

(a) t∞, which includes all achromatic contributions (spin, orbit, astrometric, gravitational)

(b) tDM(ν, t) = dispersion delays, including frequency dependent DMs

(c) ∆tAOA,SSBC, the observatory to solar system barycentric time offset due to refraction (§ 12.3).

II. The next three terms are time offsets, tδUm , tδpm , and tδUmδpm , caused by differences between model shapes Um

and pm and the true ensemble average shapes, ⟨Ui⟩ and ⟨p⟩.

III. Terms 5 through 7 are random errors from jitter and the finite scintle effect, which vary rapidly, and a slowly

varying term resulting from changes in the PBF vs. epoch. We denote rapid PBF changes as δp and slow changes

as δp, where the overline connotes the envelope of the PBF discussed earlier.
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IV. The remaining 14 ToA contributions result from the nine terms in the cross correlation contribution δUms ∗ δUs;

we group into fast (F) or slow(S) terms as labeled in the last column. We obtain a consolidated fast term

∆t
(F)
δUmsδUs

that varies rapidly due to jitter and the finite scintle effect (DISS time scales ∼minutes),

∆t
(F)
δUmsδUs

= ∆tδUmδUi
+ ∆tδUmδp + ∆tδUmδUiδp + ∆tδpmδUi

+ ∆tδpmδp

+ ∆tδpmδUiδp + ∆tδUmδUi + ∆tδUmδpmδp + ∆tδUmδpmδUiδp, (F2)

and ∆t
(S)
δUmsδUs

varies slowly due to refraction (RISS time scales) and rarely from secular or episodic changes in

intrinsic pulse shape (c.f. J1713+0747),

∆t
(S)
δUmsδUs

= ∆tδUmδp + ∆tδpmδp + ∆tδUmδpmδp. (F3)

Fortunately many of these terms are similar in statistical character and can be merged for modeling and statistical

inference. We write the net ToA from model fitting now also including the matched filtering error from additive noise

∆tS/N (recall up to now in this appendix we have assumed noiseless signals),

t̂ν = t0 + tδUm
+ tδpm + tδUmδpm

+
[
∆tS/N + ∆tJ + ∆tδp + ∆tδUmsδp

]
F

+ [∆tδp + ∆tδUmsδp]S . (F4)

This can be consolidated further by combining the two terms involving δp and the two terms involving δp:

t̂ν = t0 + tmismatch +
[
∆tS/N + ∆tJ + ∆t

(all)
δp

]
F

+
[
∆t

(all)
δp

]
S
. (F5)

The systematic errors from template-profile mismatch are combined into the term tmismatch = tδUm
+ tδpm + tδUmδpm .

If a single template at a reference frequency νref is used, the ‘FD’ correction used by NANOGrav is associated with

this term. Since ‘FD’ (meaning frequency dependent) applies to all terms, we refer to this particular term as the

‘chromatic mismatch’ term for this choice of template.

The rapidly varying random errors are the usual S/N, jitter, and FSE errors with the latter affected by template

mismatch.

The slowly varying error is from changes in the PBF with epoch, manifested as a change in apparent scattering time

τ , which is most likely caused by refraction that alters the PBF shape. Note again that refraction also alters the

centroid of the scattered image and thus also the width and shape of the PBF (§ 11.3). The centroid shift yields a

purely refractive time delay ∆tAOA given by Eq. 12.30 that could be itemized separately in Eq. F5, but we subsume it

here into the ∆t
(all)
δp term. This term is not equal to τ for the case where a PBF is excluded from the template and it

is not equal to δτ = τ − τtemplate when a fixed value τtemplate for the scattering time is included in the template but

the τ for the profile differs.

Mismatch is from the quantities δUm = Um − ⟨Ui⟩ and δpm = pm − ⟨p⟩ that appear in

δUms ∗ ⟨Us⟩ = δUm ∗ ⟨p⟩ + ⟨Ui⟩ ∗ δpm + δUm ∗ pm.

The PBFs are normalized to unit area so the area of the difference δpm is zero, Suppose the actual, mean PBF is a

heavy-tailed PL form while the model PBF is an exponential. Their difference is positive at small lags t ≲ τ , negative

for t ≳ τ , and asymptotes to zero at t≫ τ .

F.1. With epoch-dependent dispersion and multipath propagation

Motion of the pulsar and observer introduce epoch dependence in all propagation effects, including refraction and

multipath propagation from scattering that also require complex chromatic terms in the timing equation. Pulse

distortion from the convolution with the PBF induces short term and long term timing offsets. Refraction, which
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varies on day to several month time scales, causes image wander and distortion of the PBF. Overall we obtain the full

expression in Eq. F5 with t0(ν) expanded,

t̂ν = t∞ +
KDMDM(ν, t)

ν2
+
[
∆tS/N + ∆tJ + ∆t

(all)
δp

]
F

+ tmismatch(ν, νref , t) +
[
∆t

(all)
δp

]
S
. (F6)

where DM(ν, t) is the DM applicable to frequency ν at epoch t. Expanding DM(ν, t) = ⟨DM(ν, t)⟩ν + δDM(ν, t) as an

average over the receiver’s frequency range with a fluctuating part, the ToA equation becomes

t̂ν = t∞ +
KDM⟨DM(ν, t)⟩ν

ν2
+
[
∆tS/N + ∆tJ + ∆t

(all)
δp

]
F

+ tmismatch(ν, νref , t) +
[
∆t

(all)
δp

]
S

+
KDMδDM(ν, t)

ν2
. (F7)

In this last equation, the first line includes the targeted t∞ term along with the simplest DM term that scales strictly as

ν−2 accompanied by the rapid white noise terms. The second line includes the tmismatch term conventionally handled

through the ‘FD’ formulation for chromatic mismatch along with the slow term from PBF envelope variations and

the frequency-dependent DM terms. These terms vary with frequency differently from each other and from the ν−2

scaling of the simplest DM term.

G. TEMPORAL SPECTRA FOR SCREEN PHASE AND REFRACTION ANGLE

Here we calculate temporal spectra in terms of the electron-density wavenumber spectrum Pδne
(q, qz), where the

arguments are the two-dimensional wavenumber q in the screen plane and an orthogonal wavenumber qz in the mean

direction of propagation. We use Sa(f) to denote a temporal spectrum for a quantity a and Pa(q) for its spatial

spectrum, Our analysis applies to a screen with time-frozen fluctuations (the Taylor hypothesis) as it is swept across

the line of sight in the x direction with velocity vx.

A general relation between temporal and wavenumber spectra is then

Sa(f) =
2π

vx

∫
dqy Pa(2πf/vx, qy), (G1)

with spectra related to the temporal and spatial Fourier transforms (FTs) ã(f) and ã(q) as

Sa(f) =
⟨|ã(f)|2⟩∫

dt
and Pa(q) =

(2π)2⟨|ã(q)|2⟩∫
dx

, (G2)

where integrals in the denominators are over the same domains used to calculate the FTs. Strictly speaking, the

expressions are in the limit where these domains become infinite.

The phase is the integral ϕ(x) = −λre
∫
ds ne(x, s) through a screen with thickness much smaller than the source’s

distance but much larger than the outer scale of density fluctuations. The phase spectra are

Φ(q) = 2π(λre)
2

∫
dsPδne

(q, 0) (G3)

Sϕ(f) =
(2πλre)

2

vx

∫
ds

∫
dqy Pδne(2πf/vx, qy, 0). (G4)

The spectrum of the refraction angle θr(x) = k−1∇xϕ(x) (with k = 2π/λ) is related to the phase spectrum using the

Fourier derivative theorem, giving

Pθr
(q⊥) = k−2|q|2Pϕ(q) =

(λ2re)
2

2π
q2
∫
dsPδne

(q, 0) (G5)

and a temporal spectrum

Sθr(f) =
(λ2re)

2

vx

∫
ds

∫
dqy

[
(2πf/vx)2 + q2y

]
Pδne(2πf/vx, qy). (G6)
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The fluctuation spectrum of θr
2 results from the self convolution of Sθr under the assumption that θr(t) is a Gaussian

process,

Sθ2r (f) = 2Sθr(f) ∗ Sθr(f). (G7)

A useful expression follows by relating the fourth and second moments of θr, again for a Gaussian process, Var(θr
2) =

2Var(θr)
2. Letting Sθ2r (f) ≡ A2g(f) where g(f) is the spectral shape, this implies

Sθ2r (f) =
2[
∫
df Sθr(f)]2∫
df g(f)

g(f). (G8)

Evaluation for electron densities having a power-law spectrum that is isotropic in wavenumber, Pδne
(q) =

C2
nq

−β exp
(
−(q/qi)

2
)

for q ≥ qo and 3 < β < 4, yields temporal spectra in terms of the scattering measure

SM =
∫
dsC2

n(s),

Sϕ(f) =

√
π

(2π)β−3

Γ(β−1
2 )

Γ(β2 )

(λre)
2

vx
SM

(
f

vx

)−(β−1)

. (G9)

and

Sθr(f) =

√
π

(2π)β−3

Γ(β−3
2 )

Γ(β−2
2 )

(λ2re)
2

vx
SM

(
f

vx

)−(β−3)

. (G10)

These forms assume that the exponential factor exp
(
−(q/qi)

2
)
≃ 1 for wavenumbers that dominate the integral in

Eq. G6 at relevant frequencies f . The spectrum for θr
2 follows from Eq. G8 and G6,

Sθ2r (f) ≃ 2

(4 − β)(2π)2β−7

[
Γ(β−3

2 )

Γ(β−2
2 )

(λ2re)
2

v4−βx

SM

]2
f−(2β−7). (G11)

This expression holds for 7/2 < β < 4, including the Kolmogorov spectrum.

For a Kolmogorov spectrum (β = 11/3), these become

Sϕ(f) =
1√

2(2π)1/6
Γ(4/3)

Γ(11/6)

(λre)
2

vx
SM

(
f

vx

)−8/3

≃ (4.65 × 103 rad)2 yr × ν−2v
5/3
100 SM−3.5f

−8/3, (G12)

Sθr(f) =
1√

2(2π)1/6
Γ(1/3)

Γ(5/6)

(λ2re)
2

vx
SM

(
f

vx

)−2/3

≃ (0.0423 mas)2yr × ν−4v
−1/3
100 SM−3.5f

−2/3, (G13)

and

Sθ2r (f) =
6

(2π)1/3

[
Γ(1/3)

Γ(5/6)

(λ2re)
2

v
1/2
x

SM

]2(
f

vx

)−1/3

≃ (0.0787 mas)4 yr × ν−8v
−2/3
100 SM2

−3.5f
−1/3, (G14)

where the approximate equalities are for ν in GHz, vx in units of 100 km s−1, a fiducial scattering measure SM =

10−3.5 kpc m−20/3, and frequencies in cycles yr−1. For a source at finite distance the AOA is θAOA = (dsl/dso)θr and

the spectra for θr and θ2r should be multiplied by (dsl/dso)2 and (dsl/dso)4, respectively, where dsl is the distance of

the screen layer from the source and dso is the source-observer distance.

The temporal spectrum for DM is related to the phase spectrum as SDM(f) = (λre)
−2Sϕ(f) or

SDM(f) ≃ (1.783 × 10−4 pc cm−3)2 yr × v
5/3
100 SM−3.5f

−8/3. (G15)
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H. DERIVATION OF TOA ERRORS FROM RAPID CHANGES IN PULSE BROADENING FUNCTIONS

We analyze measured signals for a heterodyned system with a bandpass of bandwidth B centered on frequency ν0 and

shifted to baseband (zero frequency). After propagation through the ISM, the signal is

εh(t) = h(t) ∗ εi(t), (H1)

where the asterisk denotes convolution and h(t) is the impulse response of the ISM over the band sampled by the

receiver system. Generally h would include dispersion delays, refraction, and multipath effects but here we restrict it

to include only the delays associated with diffraction.

A receiver system with a bandpass function b̃(ν) yields

ε(t) = b(t) ∗ εh(t) = b(t) ∗ h(t) ∗ εi(t), (H2)

where b(t) is the temporal response equal to the inverse Fourier transform of b̃. In the following let εi(t) = δ(t) to

get ε(t) = b(t) ∗ h(t) as the impulse response from scattering combined with the receiver response. The bandpass

function b̃ is a ‘low pass’ function centered on zero frequency with total bandwidth B (across both negative and

positive frequencies). For convenience, we define |b̃|2 to have unit area. Its autocorrelation function (ACF) is then

rb̃(δν) =

∫
dν b̃(ν)b̃∗(ν + δν). (H3)

with normalization rb̃(0) = 1 and where the superscript asterisk denotes a complex conjugate. The area of |b̃(ν)|4 is

the reciprocal of the effective bandwidth, Beff . A rectangular bandpass function with bandwidth B has Beff = B and

rb̃(δν) = 1 − |δν|/B.

We call h the ‘field’ pulse broadening function (PBF) to distinguish it from the squared magnitude p(t) = |h|2, which

is the standard intensity PBF in the limit where the receiver response is much narrower than h(t).

H.1. Pulse Broadening Function

Define Γε̃(δν) as the spectral correlation function of scintillation variations. When averaged over an ensemble, its

half-width at half maximum is the scintillation bandwidth, ∆νd.

The field PDF h(t) has the form of an envelope function that multiplies a noise-like process. The envelope has duration

∼ τd, the pulse broadening time, while the noise process varies on inverse-bandwidth time scales. The noise process

is a consequence of the particular paths taken by the radiation due to diffraction, which persist over time scales up

to about the scintillation time scale, ∆tISS. It is therefore useful to define two time scales: one for variations on time

scales of order the inverse bandwidth (ns) and the other ‘epochal’ time over an observation of order minutes to hours.

The time “t” in h(t) refers to the fast time scale and the epochal time dependence is implicit for now. Here we consider

TOA variations due to the finite number of scintles within the receiver bandpass at a fixed epochal time. Later we

consider how integrations over epochal time reduce TOA variations.

The total impulse response, including the finite receiver bandwidth, ϵ(t) = h(t) ∗ b(t), has a frequency-domain ACF

Γε̃(δν) =

∫
dν b̃(ν) b̃∗(ν + δν) h̃(ν)h̃∗(ν + δν) =

∫
dν b̃(ν) b̃∗(ν + δν) Γh̃(ν, δν). (H4)

The corresponding PBF is

p(t) =

∫
dxΓε̃ (x)e2πixt (H5)

The ensemble averages of these quantities are

⟨Γε̃(δν)⟩= rb̃(δν)
〈
Γh̃(δν)

〉
(H6)

⟨p(t)⟩=

∫
dx ⟨Γε̃ (x)⟩ e2πixt, (H7)
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where we have dropped the ν-dependence of
〈
Γh̃(δν)

〉
by assuming that h̃(ν) has stationary statistics over the band-

width (i.e. the frequency range is small enough that the scintillation bandwidth does not change significantly). Both

|h(t)|2 and p(t) have unit area and Γh̃(0) = rb̃(0) = Γε̃(0) = 1. For wide bandwidths, similar quantities can be defined

for subbands.

H.2. Mean Delay

The sum of a large number of pulses converges to the pulse shape intrinsic to the pulsar convolved with the ensemble

average PBF. Because the PBF is causal, the measured pulsar signal is always delayed by scattering. The TOA shift

(of an impulse) is the mean of the PBF,

tp =

∫
dt t p(t), (H8)

which has an ensemble average

⟨tp⟩ =

∫
dt t ⟨p(t)⟩ . (H9)

Substituting for p(t) using Eq. H5 and using the derivative theorem for Fourier transforms yields

⟨tp⟩ =

∫
dt t

∫
dx ⟨Γε̃(x)⟩ e2πxt =

1

2πi

∫
dx ⟨Γε̃(x)⟩ δ ′(x) = − 1

2πi

〈
Γ

′

ε̃(0)
〉
, (H10)

where Γ
′

ε̃(x) ≡ dΓε̃(x)/dx and we used the derivative property of the delta function.

The time delay comprises two terms,

⟨tp⟩ = ⟨tb⟩ + ⟨th⟩ = − 1

2πi

[
r
′

b̃
(0) + Γ

′

h̃
(0)
]
, (H11)

where the delay due to the causal bandpass filter is ⟨tb⟩ while ⟨th⟩ is from scattering in the ISM; both are calculated

analogously to Eq. H8 using |b(t)|2 and |h(t)|2 in place of p(t), respectively. The range of cases encountered includes

⟨th⟩ ≪ ⟨tb⟩ for low-DM pulsars observed at high frequencies while ⟨th⟩ ≫ ⟨tb⟩ for high-DMs and low frequencies.

A commonly-assumed PBF is a one-sided exponential with time constant τ ,

p(t) = τ−1 exp(−t/τ)Θ(t), (H12)

where Θ(t) is the Heaviside function. For this case, ⟨tp⟩ = τ is obtained from either Eq. H9 or H10. For more realistic

PBFs, such as the heavy-tailed PBFs associated with a Kolmogorov or other power-law media, ⟨tp⟩ is generally larger

than τ .

H.3. Delay Variance

First we consider the case where the integration time is much less than the scintillation time, corresponding to the case

of static geometry. Later we consider the opposite case where the scintillation time is much larger than the scintillation

time.

The stochasticity of p(t) causes mean square TOA fluctuations

⟨t2p⟩ = ⟨tp⟩2 + σ2
tp =

∫∫
dtdt ′ tt ′ ⟨p(t)p(t ′)⟩ = − 1

(2π)2
d2

dxdx′

[
⟨Γε̃ (x)Γε̃ (x′)⟩

]
x=x′=0

. (H13)

The expectation in Eq. H13 is

⟨Γε̃ (x)Γε̃ (x′)⟩=

∫∫
dνdν+ b̃(ν)b̃∗(ν + x)b̃(ν+)b̃∗(ν+ + x′)

×
〈
h̃(ν)h̃∗(ν + x)h̃(ν+)h̃∗(ν+ + x′)

〉
. (H14)
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To an excellent approximation, h̃(ν) is a complex Gaussian process when scintillations are strong, so the fourth moment

can be expanded into products of second moments61,〈
h̃(ν)h̃∗(ν + x)h̃(ν+)h̃∗(ν+ + x′)

〉
=
〈
Γh̃(x)

〉 〈
Γh̃(x′)

〉
+
〈
Γh̃(ν+ − ν + x′)

〉 〈
Γh̃(ν − ν+ + x)

〉
. (H15)

The first term in the expansion yields the square of the mean delay, ⟨tp⟩2, while the second term yields the variance

of tp,

σ2
tp = − 1

(2π)2

∫∫
dνdν+

d2

dxdx′

[
Bν,xBν+,x′

〈
Γh̃(ν+ − ν + x′)

〉 〈
Γh̃(ν − ν+ + x)

〉 ]
x=x′=0

. (H16)

where we have defined Bν,x ≡ b̃(ν)b̃∗(ν + x).

The double derivative yields four combinations of individual derivatives of the Bν,x and
〈
Γh̃
〉

factors evaluated at

x = x′ = 0,

(I) B
′

ν,0B
′

ν+,0

〈
Γh̃(ν+ − ν)

〉 〈
Γh̃(ν − ν+)

〉
≡ B

′

ν,0B
′

ν+,0

∣∣〈Γh̃(ν − ν+)
〉∣∣2

(II) Bν,0B
′

ν+,0

〈
Γh̃(ν+ − ν)

〉 〈
Γ

′

h̃
(ν − ν+)

〉
(III) B

′

ν,0Bν+,0

〈
Γ

′

h̃
(ν+ − ν)

〉 〈
Γh̃(ν − ν+)

〉
(IV) −Bν,0Bν+,0

〈
Γ

′

h̃
(ν+ − ν)

〉〈
Γ

′

h̃
(ν − ν+)

〉
≡ Bν,0Bν+,0

∣∣∣〈Γ
′

h̃
(ν − ν+)

〉∣∣∣2 .
Generally, all terms contribute to the delay variance. However terms I - III are important only for the case where

the scintillation bandwidth is comparable to or larger than the measurement bandwidth Beff . In the regime where

∆νd ≪ Beff , the four terms contribute to the variance respectively as B−2
eff (∆νd/Beff), B−2

eff , B−2
eff , and B−2

eff (Beff/∆νd).

In this regime, therefore, term IV will exceed the next largest terms by a factor proportional to the number of scintles

across the band.

H.3.1. Narrow-scintle Regime

For ∆νd ≪ Beff , the delay variance becomes

σ2
tp ≈ 1

(2π)2

∫∫
dνdν+Bν,0Bν+,0

∣∣∣〈Γ
′

h̃
(ν − ν+)

〉∣∣∣2 . (H17)

We simplify Eq. H17 by changing variables from ν, ν+ to ν = (ν + ν)/2 and δν = ν − ν+ and by defining Bν = |b̃(ν)|2
(which equals Bν,0 used before but simplifies the notation) and its frequency-domain correlation function,

R̃B(δν) =

∫
dν BνBν+δν . (H18)

The inverse Fourier transform of R̃B is RB(t), which has an area identically equal to Beff . This yields

σ2
tp ≈ − 1

(2π)2

∫
dδν R̃B(δν)

∣∣∣〈Γ
′

h̃
(δν)

〉∣∣∣2 . (H19)

By using the relation between p(t) and
〈
Γh̃(δν)

〉
we obtain

σ2
tp =

∫∫
dtdt ′ tt ′ ⟨p(t)⟩ ⟨p(t ′)⟩RB(t− t ′). (H20)

61 Note that the fourth moment of a complex Gaussian process expands into two terms while a real process expands into three.
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In the limit of narrow scintles where ∆νd ≪ B, the bandpass correlation RB(t− t ′) tends to a delta function δ(t− t ′)

with area B−1
eff and the delay variance simplifies to

σ2
tp ≈ B−1

eff

∫
dt t2 ⟨p(t)⟩2 . (H21)

Exponential PBF: For ⟨p(t)⟩ = τ−1 exp(−t/τ)Θ(t), the time integral yields τ/4 and σtp ≈
√
τ/Beff/2. Using the

relation 2πτ∆νd = 1 for this PBF62, we obtain

σtp =
τ√

2Beff/π∆νd
(H22)

which can be expressed in terms of the number of scintles within the band63

Nν =
Beff

π∆νd
, (H23)

to yield

σtp =
τ√
2Nν

. (H24)

H.3.2. Integration Times Longer than the Scintillation Time

For integration times T smaller than the diffractive scintillation time scale (∆tISS) the PBF is static because multipath

scattering has a steady (but frequency dependent) configuration of propagation paths. Observations of nearby pulsars

at high frequencies often involve this situation for the entirety of a 1/2 to one hour observation. However for other cases

T can be much longer than the scintillation time scale, causing the pattern of scintles within the receiver bandpass to

change. To distinguish between short time scales as used above — which range from the inverse bandwidth to some

multiple of the pulse broadening time — from longer times, we introduce the time ts ∈ [0, T ] that can span many

scintillation time scales. The correlation function of h̃ at time ts becomes

Γh̃(δν, δts) = h̃(ν, ts)h̃
∗(ν, ts + δts) (H25)

and the time-integrated PBF is

p(t) = T−1

∫ T

0

dts b̃(ν) b̃∗(ν + δν) Γh̃(δν; 0). (H26)

The ensemble average of p(t) is independent of T in this treatment though in reality complications arise from epoch

to epoch variations due to refraction in the ISM. The delay variance is calculated as before and the fourth moment of

h̃ becomes (c.f. Eq. H15),〈
h̃(ν, ts)h̃

∗(ν + x, ts)h̃(ν+, t
′

s)h̃
∗(ν+ + x′, t

′

s)
〉

=〈
Γh̃(x, 0)

〉 〈
Γh̃(x′, 0)

〉
+
〈

Γh̃(ν+ − ν + x, ts − t
′

s)
〉〈

Γh̃(ν − ν+ + x′, ts − t
′

s)
〉
. (H27)

The first term in the expansion corresponds to ⟨tp⟩2 and the second term yields the variance. For scintles that are

narrow compared to the bandwidth, we obtain the extension of Eq. H19

σ2
tp ≈

1

(2π)2T

∫
dδts

(
1 − |δts|

T

)∫∫
dνdν+Bν,0Bν+,0

∣∣∣〈Γ
′

h̃
(ν − ν+, δts)

〉∣∣∣2 , (H28)

62 Generally 2πτ∆νd = C1 with C1 ranging from 1 to 2, depending on the scattering medium but the constant is unity for a thin screen
that produces an exponential PBF.

63 The number of scintles is defined so that the rms intensity over the band is σI/⟨I⟩ = N
−1/2
ν .
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where the derivative of the ACF is with respect to the frequency lag, ν − ν+. A change of variables gives

σ2
tp ≈ 1

(2π)2T

∫
dδts

(
1 − |δts|

T

)∫
dδν R̃B(δν)

∣∣∣〈Γ
′

h̃
(δν, δts)

〉∣∣∣2 . (H29)

When scintles are also short in duration compared to the integration time T , we obtain

σ2
tp ≈ 1

(2π)2T

∫
dδts

∫
dδν R̃B(δν)

∣∣∣〈Γ
′

h̃
(δν, δts)

〉∣∣∣2 . (H30)

Generally,
〈

Γ
′

h̃
(δν, δts)

〉
is not factorable into time-lag and frequency-lag factors so there is no general analog of

Eq. H20, H21. However, the rms tp will still scale similarly to Eq. H24 as τ/
√

2Ns where the number of scintles in the

large BeffT limit is Ns ∝ BeffT/∆νd∆td.

I. DYNAMIC SPECTRA COMPUTATION AND ESTIMATION ERRORS

The dynamic spectrum (DS) is considered for a wide total bandwidth and time span encompassing many scintillation

time scales. It is simply the power spectrum calculated from Fourier transforms, but the lengths of those FTs relative

to the pulse period offer alternative specific methods. The spectrum comprises frequency structure from both the

emitted signal (amplitude modulated noise) and from multipath propagation through the ISM. The primary utility of

the DS for pulsar timing is to provide a good estimate of the scintillation bandwidth. Fortunately, averaging spectra

over multiple pulses diminishes emission structure so that scintillation features dominate. This contrasts with the

average pulse profile that includes the intrinsic pulse shape along with scattering, regardless of how many pulses are

averaged.

Good estimation of DISS parameters requires a DS containing many scintles resolved in frequency and time. Larger

scattering yields smaller scintles, so sampling requirements are more stringent for larger DM pulsars observed at lower

frequencies. For the largest DMs and lowest frequencies, the scintles are unresolvable and only pulse-shape fitting will

yield an estimate for τ .

Denoting the lowest and highest frequencies of the DS as νl and νh, respectively, voltage data are obtained over a total

bandwidth B = νh− νl and time span T with resolutions ∆ν and ∆t. To satisfy the estimation conditions , we require

∆ν ≪ ∆νd ≪ B and ∆t ≪ ∆td ≪ T , where the DISS bandwidth ∆νd and DISS time scale ∆td are defined in the

standard way64. Two approaches for obtaining dynamic spectra are as follows.

I.1. Phase-resolved spectroscopy (PRS)

If the DISS bandwidth is large enough, a running spectrum across pulse phase is obtained with FFT lengths TFT ≲ WA,

where WA is the pulse width (i.e. the width of the squared amplitude modulation in the AMN model.). Multiple FFTs

done across the pulse width (if TFT ≪ WA) and over multiple periods are then combined (as squared magnitudes) to

form a DS with frequency resolution ∆ν = T−1
FT and time resolution ∆t = Np × P by averaging spectra in phase bins

over Np periods, corresponding to 1 to 10 s, typically.

Nyquist sampling of complex voltage data requires sample intervals ∆tNy = 1/B. Resolving scintles requires ∆ν ≲ ∆νd
and ∆t ≲ ∆td. Using the maximum FFT length with the uncertainty relation Eq. 9.10 gives 1/WA ≲ 1/TFT =

1/(NpP) ≲ C1/2πτ , or

2πτ

C1
≲ TFT ≲ WA ≲ P ≪ ∆td, (I1)

where we consider the DISS time scale ∆td to be the largest. For a thin screen, the scintillation time scale is

∆td(ν) =
aβ

2πνveff

(
cd ′

τ

)1/2

≃ 143 s × ν6/5

v100

(
d ′

τ1

)1/2

, (I2)

64 ∆νd Is the HWHM of the intensity correlation function vs. frequency lag and ∆td is the HW at 1/e time lag.



185

where aβ ≡ 1/2(4−β)/2(β−2) ≃ 0.93 for β = 11/3 and where ν is in GHz, v100 = veff/(100 km s−1), d ′ = s(1 − s)d is

the effective distance in kpc for a screen at fractional distance s from the pulsar, and τ1 is the scattering time in µs

at 1 GHz.

The constraint on the scattering time,

τ ≲
WA

2πC1
≃ 0.16 ms × WA(ms)

C1
, (I3)

is satisfied by many long period pulsars with WA ∼ 10 to 100 ms except at low frequencies where τ(ν) ∝ ν−4.4 can

exceed the requirement.

PRS clearly fails if scintles are unresolved using the maximum FFT length indicated in Eq. I1. The MSP B1937+21 is

a textbook example: with WA ≃ 45µs, the requirement τ ≲ 7µs is violated by the measured τ ≃ 25µs at 0.43 GHz.

I.1.1. Degrees of freedom in the DS

In a time series comprising N complex samples, there are Ndof = 2N degrees of freedom (dof). For a total time Ttotal
and Nyquist sampling over a bandwidth B, this is Ndof = 2BTtotal.

A FT of length NFT spanning a time TFT yields a spectrum with frequency resolution ∆ν = T−1
FT and 2 dof per

frequency bin.

When Nb spectra are averaged over a time Tstep = NbTFT to give a single time step in the DS, there are 2Nb dof/bin.

In a fixed total time Ttotal there are Nsteps = Ttotal/Tstep total time steps in the DS, yielding 2NFTNbNsteps dof/bin.

With NFT frequency bins, the total number of dof in the DS is

Ndof = 2NbNsteps ×NFT

=
2NbNFTTtotal

NbTFT
=

2NFTTtotal
NFT∆tNy

= 2BTtotal, (I4)

in agreement with Ndof in the original time series.

For PRS, spectra are calculated only for an on-pulse window with duty cycle ∼ WA/P . The number of degrees of

freedom for PRS is therefore

N
(PRS)
dof = 2BTtotal

(
WA

P

)
. (I5)

I.1.2. Error budget of DS

In building a DS from a voltage time series ε(t), the spectral estimate from a single FT is

S(ν) = N−1
FT |ε(ν)|2. (I6)

For a stochastic signal, fluctuations about the spectral mean are 100% because σS/⟨S⟩ =
√

2/Ndof/bin and Ndof/bin = 2.

We express this as

S(ν) = ⟨S⟩ × [1 + E(σ2
S)], (I7)

where σS = 1 and the second term denotes random values drawn from an exponential PDF, E(σ2
S) =

σ−2
S exp

(
−S/σ−2

S

)
Θ(S) where Θ(S) is the Heaviside (unit step) function. The expression implies that the spectrum

is given by the mean plus an error of similar amplitude drawn from an exponential distribution. This form leaves

unspecified the correlation frequency of the error: for AMN spectral noise this is δνcorr ∼ W−1
A while for radiometer

noise it is δνcorr ∼ T−1
FT. For diffractive scintillations δνcorr ≡ ∆νd, the scintillation bandwidth.
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With PRS, there are ∼WA/TFT spectra averaged across the pulse in each period and Np periods worth of such spectra

are averaged to get a single time step in the DS. This gives Nb = NpWA/TFT = Np/εW, where TFT ≡ εWWA and

Ndof/bin = 2Nb per bin.

We then write, after invoking the central limit theorem (Ndof/bin ≫ 1) and denoting a zero mean Gaussian distribution

with variance σ2 as N (0, σ2),

⟨S(ν)⟩Nb
= ⟨S⟩ ×

[
1 + N (0, N−1

b )
]
. (I8)

For the scintillated AMN signal with additive noise, we write I(ν) = S(ν) + N(ν) and express the block-averaged

spectrum as

⟨I(ν)⟩Nb
= H(ν)⟨Sν⟩ϕ

(
P

WA

)
×
[
1 + N (0, N−1

b )
]

+ σN ×N (0, N−1
b ), (I9)

where the DISS modulation H(ν) is assumed constant over the block average. It has unit mean and unit variance (in

strong scattering with no quenching from time-frequency averaging, as here). The rms noise variance in a single FT

is for radiometer noise with unit time-bandwidth product, σN = Ssys. Adjusting terms, we rewrite the spectrum as

⟨I(ν)⟩Nb
= ⟨Sν⟩ϕ

(
P

WA

){
H(ν) ×

[
1 + N (0, N−1

b )
]

+
Ssys

⟨Sν⟩ϕ

(
WA

P

)
×N (0, N−1

b )

}
(I10)

The signal to noise factor for a single spectrum (i.e. based on one FT) is

(S/N)1 =
⟨Sν⟩ϕ
Ssys

P

WA
≃ 0.011 ×

( ⟨Sν⟩ϕ/1 mJy

Ssys/3 Jy

)(
0.03

WA/P

)
, (I11)

where a nominal 1 mJy period averaged flux density and 3% duty cycle are used. The value of Ssys = 3 Jy is

appropriate for Arecibo/DSA-2000/FAST/SKA-mid class telescopes. In most cases (S/N)1 ≪ 1 applies and the

errors are radiometer noise dominated. Exceptions are the Vela pulsar with (S/N)1 ≃ 90 and 20 at 0.4 and 1.4 GHz

respectively. Among MSPs, J0437-4715 has (S/N)1 ≃ 8 and 2 while J1939+2134 (B1937+21) has (S/N)1 ≃ 3.1 and

0.2 at these frequencies.

The spectrum at a single time step in the DS comprises a block average of Nb individual spectra, which we express as

⟨I(ν)⟩Nb
= ⟨Sν⟩ϕ

(
P

WA

)[
H(ν) + N (0, σ2

DSN
)
]
, (I12)

where the dimensionless variance of the Gaussian distribution is

σ2
DSN

=

[
1 + (S/N)−2

1

Nb

]
. (I13)

Block averaging is critical to ensuring adequate sensitivity to scintillations.

I.1.3. Errors in estimating ∆νd from the spectral ACF

The utility of the DS in the pulsar timing context is for estimating the scintillation bandwidth, then the scattering

time, and finally a correction to the raw ToA. An ACF of a single spectrum has a width with an associated error due

to ACF fluctuations. For a single instance of ⟨I(ν)⟩Nb
we do not include fluctuations in H(ν) because we wish to

know the scattering time for that particular realization of H(ν). In another context, we might want an epoch averaged

estimate, which would calculate the average ACF from the entire DS (i.e. the average of individual ACFs).

The ACF RIb(δν) of the spectrum in Eq. I12 has a fractional error from radiometer noise near zero lag δν = 0+ (see

section I.3),

ε
(N)
ACF ≡ [VarRIb(0+)]1/2

⟨RIb(0+)⟩ ≃
[
σ4
DSN

+ 4σ2
DSN

RS(0+)
]1/2

√
NFT ×RS(0+)

. (I14)
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Substituting other quantities yields

ε
(N)
ACF =

2√
NFTNb

[
1 + (S/N)−2

1

]1/2 {
1 +N−1

b [1 + (S/N)−2
1 ]
}1/2

(S/N)1≪1≃ 2

(S/N)1
√
NFTNb

{
1 +N−1

b (S/N)−2
1

}1/2
N

1/2
b (S/N)1≫1

≃ 2

(S/N)1
√
NFTNb

≃ 2

(S/N)1

(
P

TtotalBWA

)1/2

≃ 2

(
Ssys

⟨Sν⟩ϕ

)(
WA

TtotalBP

)1/2

(I15)

In the second to last step we assume the DS comprises Nb = (WA/P )(Ttotal/TFT) = (WA/P)(TtotalB/NFT) total

blocks where we include a duty cycle factor WA/P and we relate the sampling time to bandwidth, δt = 1/B, which

gives TFT = NFT/B.

Note that the last result can be obtained by considering the number of noise degrees of freedom included in the ACF

for PRS (Eq. I5)

ε
(N)
ACF ≃ 2

(S/N)1

(
2

N
(PRS)
dof

)1/2

. (I16)

The resulting fractional error on the scintillation bandwidth ∆νd (defined as the HWHM of the ACF) due to radiometer

noise only is

ε
(N)
∆νd

= K∆νdε
(N)
ACF

(
∆ν

∆νd

)1/2

, (I17)

where ∆ν is the spectral frequency resolution and the constant K∆νd ∼ 1 is dependent on the shape of the ACF65,

which depends on the shape of the PBF. In practice we know the PBF shape only approximately because it is stochastic

on both short and long time scales. Substituting for ε
(N)
ACF using the last expression in Eq. I15 gives

σ
(N)
∆νd

≃ 2K∆νd

(
Ssys

⟨Sν⟩ϕ

)(
WA∆ν∆νd
TtotalBP

)1/2

. (I18)

I.2. Cyclic spectroscopy (CS)

The primary utility of the cyclic spectrum (CS) is that it can provide high-frequency resolution dynamic spectra, as

noted. Second is its potential for estimating the full impulse response h(t) contemporaneously with arrival time data,

which could improve efforts to correct ToAs for multipath propagation delays (e.g. P. B. Demorest 2011; M. A. Walker

et al. 2013; N. Palliyaguru et al. 2015; T. Dolch et al. 2021; J. E. Turner et al. 2023).

The CS is defined as

Γε̃(δν, ν) = ε̃(ν + δν/2)ε̃ ∗(ν − δν/2) (I19)

and is based on a single FT; averaging over multiple FTs is done later. Inserting the scattered baseband field defined

earlier, the CS is

Γε̃(δν, ν) = Γh̃(δν, ν)

∫∫
dt1dt2 a(t1)a(t2)m(t1)m∗(t2)e2πi[ν(t1−t2)+δν(t1+t2)/2], (I20)

65 E.g. K∆νd ∼ 1.16 for a Gaussian shape (D. D. Lenz & T. R. Ayres 1992). For an exponential PBF the ACF is Lorentzian and
K∆νd ∼ 1.58.
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where

Γh̃(δν, ν) = h̃(ν + δν/2)h̃ ∗(ν − δν/2) (I21)

is the CS of the field PBF.

Resolving small scintle bandwidths ∆νd simply requires longer FTs than those used with phase resolved spectroscopy.

The CS employs FTs spanning multiple periods, TFT ≡ NpP, but smaller than the scintillation time ∆td. In fact they

need to be much smaller than ∆td in order to reduce errors by summing multiple blocks.

For a single FT the full CS that includes radiometer noise and all cross terms is

Γε̃(δν, ν) = ε̃(ν+)ε̃ ∗(ν−) = Γh̃(δν, ν)Γε̃i(δν, ν) + Γñ(δν, ν) + [h̃(ν+)ε̃i(ν+)ñ∗
ν− + h̃(ν−)ε̃i(ν−)∗ñ(ν+)] (I22)

where ν± ≡ ν ± δν/2 and cross terms in square brackets between ñ and ε̃i average to zero. However, they contribute

significantly to the variance of CS estimates, as shown below. For zero lag, Γε̃(δν = 0, ν) = |ε̃(ν)|2 = H(ν)|ε̃i(ν)|2 +

|ñ(ν)|2 is proportional to the standard FT spectral estimate for ε (when the cross terms are averaged out).

At minimum, the scintillation spectrum H(ν) ≡ |h̃(ν)|2 is the quantity of interest to be extracted from the CS.

Fluctuations in H(ν) and Γε̃i from a single FT are 100% about the mean. The exponential statistics of these quantities

originates from the stochasticity of the signal, which yields complex Gaussian statistics for the FT by virtue of the

central limit theorem. They are reduced by smoothing the spectrum or by averaging spectra obtained from multiple

FTs. Assuming the FT length TFT = NpP is chosen to yield the required frequency resolution, spectral smoothing is

not an option, so averaging over multiple blocks is mandatory66.

Ultimately the CS involves the FT Ã(δν) of the periodic modulation function A(t) ≡ a2(t), which is defined before

propagation and so does not include scattering. A strictly periodic train of Np ≫ 1 identical pulse shapes A0(t) with

A0(0) = 1 multiplied by an average amplitude Sν,pk has an FT,

Ã(δν) ≃ NpWASν,pkÃn(δν) × |sincd(δνP,Np)|, (I23)

where Ãn(δν) = Ã0(δν)/Ã0(0) is normalized to unit maximum and its effective width is WA ≡ Ã0(0). The Dirichlet

sinc function, sincd(x,N) = sin(Nπx)/N sin(πx), yields peaks at discrete frequencies δνk = k/P with k extending to

kmax ∼ P/WA, the reciprocal of the pulse duty cycle. CS can also be used to extract the full profile (i.e. across all of

pulse phase) by using a larger number of harmonics than kmax, integrating over ν, and inverse transforming Ãn.

The CS for a single FT spanning a time much greater than the inverse bandwidth but much shorter than the scintillation

time ∆td is given by an ensemble average over noise terms while Γh̃ is fixed. This gives

⟨Γε̃(δνk, ν)⟩ = (TFT/B) ⟨Sν⟩ϕ b̃(ν)

[
Ãn(δνk)Γh̃(δνk, ν) +

sinc δνkT

(S/N)ϕ

]
, (I24)

where the bandpass factor is b̃(ν) = ∆̃(ν)/∆̃(0) = B∆̃(ν). Also, ⟨Sν⟩ϕ ≃ (WA/P )Sν,pk is the period averaged flux

density (as usually reported for pulsars), b̃(ν) is the receiver bandpass function with width B, and sincx ≡ (sinπx)/πx.

The signal to noise ratio is (S/N)ϕ ≡ ⟨Sν⟩ϕ/Ssys where Ssys = Tsys/G is the system effective flux density (SEFD) for

a telescope with gain G. The first term in square brackets is from the pulsar signal while the second term is from

additive noise reduced by the (S/N)ϕ
−1

factor. Though (S/N)ϕ ≪ 1 for most pulsars, the second term is important

only for k = 0.

The inverse transform of Γε̃(δνk, ν) with respect to δνk yields the phase resolved CS or ‘profile spectrum’ with a time

argument replacing the δν argument,

⟨Γε̃(t, ν)⟩ ∝ ⟨Sν⟩ϕ b̃(ν)An(t) ∗ Γh̃(t, ν), (I25)

where a constant term from the sinc function has been excluded.

66 In this regard, the example in P. B. Demorest (2011) for B1937+21 at 430 MHz is informative. Long FTs with Np = 87 were used for
coherent dedispersion of the 30ms dispersion time across the 4MHz band. This yields frequency resolution. ∆ν ∼ 1/NpP ≃ 7.4Hz, far
smaller than scintle widths ∆νd ∼ 1/2πτ ∼ 25 kHz for τ ∼ 40µs. The CS was then degraded by a factor of 87 to yield a resolution
∆ν ∼ 0.642 kHz which is the resolution corresponding to 1/P . Paradoxically, if FT lengths of Np = 1 were used for the CS computation
(after initial coherent dedispersion), the resolution would be limited by the pulse width to ∆ν ∼ (30µs)−1 ≃ 33 kHz, insufficent for
resolving scintles. Thus the CS using Np ≫ 1 exploits the rapid sampling of voltage data, ∆t = 0.25µs to provide a large Nyquist
frequency and also provides the needed frequency resolution.



189

I.2.1. CS estimation errors

The 100% errors in the CS from a single FT (even with infinite S/N) are a consequence of the complex Gaussian

statistics of the FT. To show this we calculate the variance of Γε̃(δνk, ν),

Var [Γε̃(δνk, ν)] = [(TFT/B) ⟨Sν⟩ϕ]
2
b̃(ν+)̃b(ν−)

{∣∣Γh̃(δνk, ν)
∣∣2 + (S/N)ϕ

−2
+ (S/N)ϕ

−1
[H(ν+) +H(ν−)]

}
, (I26)

There is only weak dependence of the variance on δνk and no explicit dependence on the shape Ãn(δνk) in the total

variance. However, the dependence on Ãn(δνk) is hidden in the partition of variance into the real and imaginary parts

of Γε̃, which evolves with the variation of Ã(δνk) vs. δνk.

Figure 81 shows the mean and RMS variation of Γε̃(δνk, ν) vs ν for fixed δνk.

Partition of variance in the real and imaginary parts is shown in Figure 82, which shows the RMS Γε̃ for the total

(scattered + noise) signal (top panel), scintillated intrinsic signal (middle), and intrinsic signal (bottom). The variance

is entirely in the real part at δνk = 0, but equipartitions into the real and imaginary parts for δνk ≳ W−1
A . The

asymptotic variances for Γε̃ are constant in δνk while the other correlations, Γϵ̃+ñ and Γε̃s decline slowly due to the

scintillation modulation.
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Figure 81. Average and RMS cyclic spectra vs. frequency lag, Left: Averages over frequency ν for the cyclic spectra of the
intrinsic field ε̃i, the scattered field ε̃s that includes scintillations, and the total field that includes radiometer noise. Radiometer
noise decorrelates in one sample, producing the spike in the CS. Right: RMS values of the cyclic spectra which combine
contributions from the real and imaginary parts.

Fluctuations near the origin:

For small 0 < δνk ≪ W−1
A ≪ ∆νd ≪ B most of the variance is in the real part of Γε̃ and we have

Γh̃(δνk, ν) ∼ H(ν+) ∼ H(ν−) ≃ H(ν),

Single block: The variance is

Var [Γε̃(δνk, ν)]≃
[
(TFT/B) ⟨Sν⟩ϕb̃(ν)

]2
(S/N)ϕ

−2
[1 +H(ν)(S/N)ϕ]

2

≃⟨Γε̃(0, ν)⟩2
{

1 + [H(ν)(S/N)ϕ]−1
}2

(I27)

where the variance is written in terms of the mean CS in the last step. For large (S/N)ϕ, we see that the

CS has 100% errors.

We write the unaveraged CS in terms of the average CS and a statistical part,

Γε̃(δνk, ν) ≡ ⟨Γε̃(δνk, ν)⟩ + δΓε̃(δνk, ν), (I28)
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Figure 82. RMS of cyclic spectra vs δνk showing how fluctuations are distributed between the real and imaginary parts. In
each case, the fluctuations are all in the real part for δνk = 0.

where for (S/N)ϕ ≫ 1, δΓε̃(δνk, ν) is drawn from a one-sided exponential PDF (see Table)

δΓε̃(δνk, ν) ∼ E1(µΓε̃
), where µΓε̃

=
√

Var([Γε̃(δνk, ν)]). (I29)

For smaller (S/N)ϕ, the distribution is a combination of exponential PDFs from the signal and from

radiometer noise.

Block averaging: The only way to reduce CS estimation errors is by averaging over multiple data blocks

(assuming the frequency resolution is fixed). This reduces the variance by a factor N−1
b for a PDF that

converges to a Gaussian form. In this case,

δΓε̃(δνk, ν) ∼ N (0, σ2
Γε̃

), where σ2
Γε̃

= Var([Γε̃(δνk, ν)]) ≃ N−1
b ⟨Γε̃(δνk, ν)⟩2 . (I30)

Fluctuations away from the origin: For δνk ≳W−1
A where Ã(δνk) is negligible, the real and imaginary parts of Γε̃ have

equal variance.

Single block: The real and imaginary parts are each drawn independently from a two-sided exponential

distribution, which we write as a a complex, two sided exponential distribution (see Table),

δΓε̃(δνk ≫W−1
A , ν) ∼ E(c)

2 (0, σ2
Γε̃

). (I31)

Block averaging: The CLT implies convergence to a complex Gaussian PDF such that

δΓε̃(δνk, ν) ∼ N (c)(0, σ2
Γε̃

), where σ2
Γε̃

≃ N−1
b ⟨Γε̃(δνk, ν)⟩2 . (I32)

Implications for CS utility: If the CS is used solely to produce a dynamic spectrum, the sensitivity analysis for

estimation of ∆νd using PRS also applies here. The signal to noise ratio of the scintillated pulsar signal in the CS

need not be large in that case because determination of ∆νd is often dependent only on the total number of scintles

in the DS.

However, if the CS is used to determine the field PBF h̃(ν) itself using methods like those discussed in M. A. Walker

et al. (2013); T. Dolch et al. (2021), the requirements are much more stringent. In this case, the statistical errors must
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be small enough to allow solution for h̃(ν) from data spanning less than ∆td rather than utilizing the full DS extending

over a large multiple of ∆td. If the CS errors are scintle (not noise) dominated, the single block errors are 100% and

the Nb-block errors are ≃ N
−1/2
b . If we require that H(ν) be determined to a precision better than ϵH ≪ 1, then we

require Nb > ϵ−2
H while also requiring that the blocks extend over no more than a fraction ϵ∆td of the scintillation

time, NbNpP = ϵ∆td∆td. The combined constraints on Nb are

ϵ−2
H ≲ Nb ≲ ϵ∆td∆td/NpP. (I33)

For 10% error on H and ten samples per scintle (ϵ∆νd = 0.1), we have

100 × (0.1/ϵH)2 ≲ Nb ≲ 104 × (ϵ∆td/0.3)(∆td/100 s)(3 ms/P )N−1
p . (I34)

To resolve scintles, we must have Np ≳ (Pϵ∆νd∆νd)−1 = 2πτ/ϵ∆νdP . If Np ≫ 1, the number of blocks is more

constrained and may be insufficent for heavily scattered millisecond pulsars.

I.2.2. Role of Pulse Jitter

Departure from strict periodicity results from time jitter of pulse centroids. Gaussian distributed jitter ∆tJ of each

pulse with RMS σJ reduces Ã by a form factor,

ηJ(δν) = e−2(πδνσJ)
2

. (I35)

If we restrict the reduction in all kmax = P/WA harmonics to no more than 1/x the RMS jitter is bounded by

σJ <
WA

π

(
lnx

2

)1/2

. (I36)

For x = 2 (< 50% reduction), σJ < 0.19WA, roughly the amount of single-pulse jitter seen in most pulsars (e.g. R. M.

Shannon & J. M. Cordes 2012; M. T. Lam et al. 2016b). Larger RMS jitter reduces the number of harmonics that

otherwise could have been detectable. This reduction is unavoidable because measured average pulses include jitter.

In effect, the pulse shape A(t) used above should be viewed as including phase jitter.

I.2.3. Constraints on CS parameters

The viability of CS for obtaining dynamic spectra depends on sampling constraints and on estimation errors. The

conditions needed are therefore pulsar and frequency dependent:

1. CS is unnecessary if the scintillation bandwidth exceeds half the receiver bandwidth, ∆νd ≥ B/2. Using B = fBν

and ∆νd = C1/2πτ along with τ = τ1ν
−Xτ with Xτ = 22/5. CS cannot be applied for frequencies above

νnoCS =

(
1000πfBτ1

C1

)1/(Xτ−1)

≃ 10.7 GHz ×
(
fBτ1
C1

)5/17

. (I37)

2. Resolving scintles requires T−1
FT = (NpP)−1 ≪ ∆νd = C1/2πτ which we write as T−1

FT ≡ ϵ∆νd∆νd ≪ ∆νd with

ϵ∆νd ≪ 1. For ten samples per ∆νd (i.e. ϵ∆νd = 0.1)

Np ≫ 2πτ

C1P
or Np =

2πτ

ϵ∆νdC1P
≃ 0.063 ν−22/5τ1

(ϵ∆νd/0.1)C1P (ms)
(I38)

where τ1 is the scattering time at 1 GHz in µs units. This expression suggests that CS is indicated only for

large scattering times τ and low frequencies. However, even for moderate scattering times, CS is needed

because phase resolved spectroscopy is limited to a resolution ∆ν ≃ W−1
A that is sufficient only for WA ≳

63µs τ(µs)/C1ϵ∆νd/0.1). MSPs with narrow pulse widths, such as B1937+2214 mentioned above, do not satisfy

this condition and require Np > 1 at 0.4 GHz.

This condition can be written as ν ≥ ν∆νd with

ν∆νd =

(
2πτ1

ϵ∆νdC1NpP

)1/Xτ

≃ 0.53 GHz ×
[

τ1
(ϵ∆νd/0.1)C1Np P (ms)

]5/22
. (I39)
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3. Reducing CS variance by maximizing the number of blocks Nb is in tension with the use of Np ≫ 1 FTs to resolve

scintles (condition 2). Their product NpNb is constrained by NbTFT = NpNbP ≲ ∆td, where ∆td(ν) ∝ ν6/5 is

the scintillation time (Eq. I2). If an error ϵtol = 1/
√
Nb is specified, the FT length is limited by

Np ≲
ϵ2tol∆td
P

≃ 1.43 × 103
(ϵtol

0.1

)2( ν6/5

v100P (ms)

)(
d ′

τ1

)1/2

, (I40)

where, as before, ν is in GHz, v100 is the effective transverse velocity in units of 100 km s−1, and the effective

distance d ′ is in kpc. This limit on Np becomes small for longer periods, lower frequencies, and larger scattering

times.

Expressed as a frequency limit ν ≳ ν∆td and using the scintillation time expressed in terms of its value at 1 GHz,

∆td(ν) = ∆td1ν
2/(β−2 → ∆td1ν

6/5,

ν∆td =

(
NpNbP

∆td1

)(β−2)/2

≃ 0.016 GHz

(
NpNbv100P (ms)

1000

)5/6 ( τ1
d ′

)5/12
. (I41)

4. The last constraint derives from the net fractional errors on Γ̃ε and Ĥ(ν) from S/N considerations. Large values

of (S/N)ϕ are uncommon. The ∼ 5 Jy flux density of the Vela pulsar at 0.4 GHz exceeds Ssys only for the largest

telescopes with effective diameters ≳ 300 m. For most other cases, (S/N)ϕ ≪ 1. Restricting the fractional error

to ϵH ≪ 1 implies ϵH
√
Nbkmax(S/N)ϕ ≥ 1 or

(S/N)ϕ ≥
(
ϵH
√
Nbkmax

)−1

≃ 0.058 ×
(

0.1

ϵH

)(
103

Nb

30

kmax

)1/2

. (I42)

The MSP J1939+2134 (B1937+21) satisfies this condition in Arecibo data with Ssys ≃ 4 Jy and Sϕ(0.43 GHz) =

240 mJy while using Nb = 7.7 × 104 blocks across 120 s and kmax ≃ 20 (P. B. Demorest 2011). This yields

(S/N)ϕ ≃ 0.06 ≫ 0.008.

Conditions 1 to 3 can be rewritten as constraints on the period P , dispersion measure DM, and frequency ν evaluating

τ1 and the effective distance d ′ in terms of DM. We evaluate the constraints by calculating τ1 from the empirical

τ(DM) relation. That relation shows substantial scatter (σlog10 τ ≃ 0.76) but these amount to only a factor of 1/2 to

2 spread in the constraints given the indices of τ1 in Eq. I37, I39, and I41.

I.3. ACF Statistics

From a given spectrum we want to determine the autocorrelation width of frequency structure. Here we wish to know

the error on the signal part of the ACF caused by additive white noise. Let I = S + N where S corresponds to

the DISS spectrum and N is additive noise. Assume N has Gaussian statistics (via the CLT applied to a spectrum

produced with a sufficient degree of averaging) and let it have zero mean and correlation function ⟨NjNk⟩ = σ2
Nδjk

using the Kronecker delta δjk. Assume that S is correlated over a relatively large number of samples.

The ACF of a spectrum with N samples is

RI(δν) = N−1
N−δν∑
j=0

IjIj+δν (I43)

where IjIj+δν = SjSj+δν +NjNj+δν + SjNj+δν + Sj+δνNj .

The ensemble mean ACF receives no contributions from the S ×N cross terms,

⟨RI(δν)⟩ = N−1
N−δν∑
j=0

SjSj+δν + σ2
Nδδν,0 ≡ RS(δν) + σ2

Nδδν0. (I44)
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The mean-square ACF at a lag δτ = 0+ avoids the noise spike at zero lag but is contributed to by cross terms between

S and N , 〈
R2
I(0+)

〉
≃ ⟨RI(δν)⟩2 +N−1

[
σ4
N + 4σ2

NRS(0)
]
. (I45)

The second term is the variance of the ACF that implies a fractional ACF error,

[VarRI(0+)]1/2

⟨RI(0+)⟩ ≃
[
σ4
N + 4σ2

NRS(0)
]1/2

√
N ×RS(0)

. (I46)

The first term dominates for low S/N. For large S/N, i.e. R
1/2
S (0)/σN ≫ 1, the fractional error is

[VarRI(0+)]1/2

⟨RI(0+)⟩ ≃ 2σN√
N ×RS(0)

. (I47)

Errors in the ACF translate into an error on the estimate of its characteristic width, ŴS . Let WS equal the true width

in samples. The fractional error on the estimate is

σ
ŴS

WS
≃ 1√

WS

[VarRI(0+)]1/2

⟨RI(0+)⟩ . (I48)

Using these expressions, a specified error on WS can be back propagated into a requirement on the S/N of the data.

J. HILBERT TRANSFORM SOLUTIONS FOR NON-MINIMUM DELAY FUNCTIONS

For a function that does not have the minimum-delay property, the minimum-delay phase still has a role. Let h̃HT(ν)

be the FT obtained using the HT to calculate the minimum-delay solution. The true FT for more general functions

can be written as (e.g. A. V. Oppenheim et al. 1999, Chapter 5)

h̃(ν) = h̃HT(ν)Z(ν), (J1)

where Z(ν) is an “all-pass” filter with unit amplitude that comprises some number of zeros of exp(−2πiν) in the

complex plane and that changes only the phase. The all-pass filter can be written as the product of Q individual

factors involving the zeros s−1
j where exp(2πiν) = 0,

Z(ν) =

Q−1∏
j=0

(
e−2πiν − sj
1 − s∗je

−2πiν

)
, (J2)

and where each factor and thus Z has unity magnitude. The numerical task is to determine the values for sj (2Q

unknowns) and the value of Q itself. Determination is aided by the fact that the zeros s−1
j are outside the unit circle

and by the possibility that Q is much smaller than the overall length of a time series.

K. QUALITY MEASURE EVALUATION CODE

Quality measures can be evaluated for an individual pulsar using PTQ.py, available at GitHub (J. M. Cordes, PTQ,

(2025), GitHub respository, https://github.com/jmcordes/PTQ), which includes a description and several convenience

functions.

usage: PTQ.py [-h] [-psr PSR] [-p0 P0] [-p1 P1] [-d D] [-vtrans VTRANS] [-wc WC] [-nc NC] [-s S1400] [-tau TAU]

[-nu_tau NU_TAU] [-B BW] [-Tint TINT] [-Ssys SSYS] [-npol NPOL] [-Tyr TYR] [-bKol BKOL] [-Fj FJ]

[-nu_eval NU_EVAL] [-v]

Calculates quality measures using input data for an MSP. Outputs metrics that compare the pulsar to other MSPs. JMC 2023 Jun

https://github.com/jmcordes/PTQ)
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- 2024 Nov 5, 2025 May 19-22 Input information needed: psrname P, Pdot period, period derivative sec and s/s D distance kpc

vtrans transverse pulsar speed km/s tau pulsar broadening time microsec nu_tau RF for pulsar broadening time GHz Wc

Component width microsec nc Number of components dimensionless Alternative to Wc, nc (not yet implemented): template file

From which Weff is determined (equivalent to Wc, nc) Metrics file: ’QMcalcs_metrics_20241105.npz’

optional arguments:

-h, --help show this help message and exit

-psr PSR, --psr PSR Pulsar name (for labeling) (default: J1909-3744)

-p0 P0, --p0 P0 pulse period (sec) (default: 0.002947108069160717)

-p1 P1, --p1 P1 period derivative (s/s) (default: 1.402541e-20)

-d D, --d D pulsar distance (kpc) (default: 1.14)

-vtrans VTRANS, --vtrans VTRANS

Transverse pulsar speed (km/s) (default: 200.19)

-wc WC, --wc WC Profile component width (microsec)) (default: 45.6489)

-nc NC, --nc NC Number of profile components (default: 1)

-s S1400, --s1400 S1400

Period averaged flux density (mJy)) (default: 1.8)

-tau TAU, --tau TAU Pulse broadening time (microsec) (default: 0.033263530451980036)

-nu_tau NU_TAU, --nu_tau NU_TAU

Radio frequency of pulse broadening time (GHz) (default: 1)

-B BW, --BW BW Bandwidth (GHz) (default: 0.1)

-Tint TINT, --Tint TINT

Total integration time per epoch (sec) (default: 1000.0)

-Ssys SSYS, --Ssys SSYS

SEFD (Jy (default: 3)

-npol NPOL, --npol NPOL

Number of polarization channels (int (default: 2)

-Tyr TYR, --Tyr TYR Time range for calculating spin noise (yr) (default: 1)

-bKol BKOL, --bKol BKOL

Wavenumber spectrum spectral index (dimensionless (default: 3.6666666666666665)

-Fj FJ, --FJ FJ Jitter parameter (dimensionless) (default: 0.3333333333333333)

-nu_eval NU_EVAL, --nu_eval NU_EVAL

RF for evaluating pulsar (GHz) (default: 1.4)

-v, --V Verbose to get detailed output (default: False)
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Stanimirović, S. 2005, Discovery of Pulsed OH Maser

Emission Stimulated by a Pulsar, Science, 309, 106,

doi: 10.1126/science.1112494

Weisberg, J. M., Nice, D. J., & Taylor, J. H. 2010, Timing

Measurements of the Relativistic Binary Pulsar PSR

B1913+16, ApJ, 722, 1030,

doi: 10.1088/0004-637X/722/2/1030

Wharton, R. S., Chatterjee, S., Cordes, J. M., et al. 2019,

VLA Observations of Single Pulses from the Galactic

Center Magnetar, ApJ, 875, 143,

doi: 10.3847/1538-4357/ab100a

Williamson, I. P. 1974, Pulse broadening due to multiple

scattering in the interstellar medium-111, MNRAS, 166,

499, doi: 10.1093/mnras/166.3.499

http://doi.org/10.1088/0004-637X/787/2/137
http://doi.org/10.1098/rsta.1992.0088
http://doi.org/10.1103/RevModPhys.66.711
http://doi.org/10.1201/9781003240648
http://doi.org/10.1186/s40623-015-0228-9
http://doi.org/10.1051/0004-6361/202039846
http://doi.org/10.1088/1538-3873/129/972/024301
http://doi.org/10.3847/1538-4357/acb6fd
http://doi.org/10.3847/1538-4357/ad5af9
http://doi.org/10.3847/1538-4357/ad4a54
http://doi.org/10.3847/1538-4357/ab7b67
http://doi.org/10.1103/PhysRevD.90.104012
http://doi.org/10.1086/501001
http://doi.org/10.1088/0067-0049/204/1/13
http://doi.org/10.1093/mnras/stae2326
http://doi.org/10.3847/1538-4357/aa7741
http://doi.org/10.3847/1538-4357/ab6f75
http://doi.org/10.3847/1538-4357/ac4045
http://doi.org/10.1088/0004-637X/779/2/99
http://doi.org/10.1093/mnras/stx837
http://doi.org/10.1111/j.1365-2966.2007.11703.x
http://doi.org/10.1051/0004-6361/201833215
http://doi.org/10.1126/science.1112494
http://doi.org/10.1088/0004-637X/722/2/1030
http://doi.org/10.3847/1538-4357/ab100a
http://doi.org/10.1093/mnras/166.3.499


208

Williamson, I. P. 1975, The Broadening of Pulses Due to

Multipath Propagation of Radiation, Proceedings of the

Royal Society of London Series A, 342, 131,

doi: 10.1098/rspa.1975.0016

Wu, Z., Coles, W. A., Verbiest, J. P. W., et al. 2023, Pulsar

scintillation studies with LOFAR: II. Dual-frequency

scattering study of PSR J0826+2637 with LOFAR and

NenuFAR, Monthly Notices of the Royal Astronomical

Society, 520, 5536, doi: 10.1093/mnras/stad429

Xi, H., Peng, B., Staveley-Smith, L., For, B.-Q., & Liu, B.

2022, The FAST Ultra-Deep Survey (FUDS):

Observational strategy, calibration and data reduction,

Publications of the Astronomical Society of Australia, 39,

e019, doi: 10.1017/pasa.2022.16

Xu, H., Huang, Y. X., Burgay, M., et al. 2021, A sustained

pulse shape change in PSR J1713+0747 possibly

associated with timing and DM events, The

Astronomer’s Telegram, 14642, 1

Xu, H., Chen, S., Guo, Y., et al. 2023, Searching for the

Nano-Hertz Stochastic Gravitational Wave Background

with the Chinese Pulsar Timing Array Data Release I,

Research in Astronomy and Astrophysics, 23, 075024,

doi: 10.1088/1674-4527/acdfa5

Yan, W. M., Wang, N., Manchester, R. N., Wen, Z. G., &

Yuan, J. P. 2018, Single-pulse observations of the

Galactic centre magnetar PSR J1745-2900 at 3.1 GHz,

MNRAS, 476, 3677, doi: 10.1093/mnras/sty470

Yao, J. M., Manchester, R. N., & Wang, N. 2017, A New

Electron-density Model for Estimation of Pulsar and

FRB Distances, ApJ, 835, 29,

doi: 10.3847/1538-4357/835/1/29

Young, O., & Lam, M. T. 2024, Redeveloping a CLEAN

Deconvolution Algorithm for Scatter-broadened Radio

Pulsar Signals, ApJ, 962, 131,

doi: 10.3847/1538-4357/ad1ce7

Zhang, Y.-Z., Zhang, H.-L., Wang, J., et al. 2024,

UWLPIPE: Ultra-wide Bandwidth Low-frequency Pulsar

Data Processing Pipeline, Research in Astronomy and

Astrophysics, 24, 075011, doi: 10.1088/1674-4527/ad4fc4

Zhu, H., Baker, D., Pen, U.-L., Stinebring, D. R., & van

Kerkwijk, M. H. 2023, Pulsar Double Lensing Sheds

Light on the Origin of Extreme Scattering Events, ApJ,

950, 109, doi: 10.3847/1538-4357/accde0

Zhu, W. W., Stairs, I. H., Demorest, P. B., et al. 2015,

Testing Theories of Gravitation Using 21-Year Timing of

Pulsar Binary J1713+0747, ApJ, 809, 41,

doi: 10.1088/0004-637X/809/1/41

http://doi.org/10.1098/rspa.1975.0016
http://doi.org/10.1093/mnras/stad429
http://doi.org/10.1017/pasa.2022.16
http://doi.org/10.1088/1674-4527/acdfa5
http://doi.org/10.1093/mnras/sty470
http://doi.org/10.3847/1538-4357/835/1/29
http://doi.org/10.3847/1538-4357/ad1ce7
http://doi.org/10.1088/1674-4527/ad4fc4
http://doi.org/10.3847/1538-4357/accde0
http://doi.org/10.1088/0004-637X/809/1/41

	I. Preliminaries
	Introduction
	Nomenclature
	II. Basics of Pulsar Timing
	The gist of pulsar timing and its limitations
	Pulsar spin stability and orbital noise
	Elements of pulsar signals and their propagation
	TOA estimation using template matching
	TOA variations from single-pulse stochasticity
	Instrumental effects
	III. Interstellar Effects
	ISM structure and propagation scaling laws
	Interstellar analytics
	A gallery of pulse broadening functions
	Timing variations from chromatic plasma effects
	IV. Chromatic leakage, gaussianity, fluctuation spectra, and red noise assessments
	Chromatic leakage into achromatic arrival times and residuals
	Gaussian and non-Gaussian timing fluctuations
	Fluctuation spectra of timing delays and residuals
	Red noise assessment of MSPs in PTAs
	V. Timing equations and mitigations
	Profile modeling summary and arrival time models
	ToA error corrections
	VI. Prioritizing MSPs for PTA optimization
	Spin noise triage
	Evaluating timing quality of individual pulsars
	VII. Summary and Recommendations
	Building a Pulsar Timing Array
	Customized scattering mitigation for individual MSPs 
	Appendices
	Nomenclature
	Spectral representations
	Modulated complex noise
	ToA variations from frequency-dependent dispersion deasures
	Simulation of propagation through thin plasma screens
	Inventory of timing effects from dispersion, scattering, and refraction
	Temporal spectra for screen phase and refraction angle
	Derivation of TOA errors from rapid changes in pulse broadening functions
	Dynamic spectra computation and estimation errors
	Hilbert transform solutions for non-minimum delay functions
	Quality Measure Evaluation Code

